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Abstract

In this paper, a deep convex matrix factorization framework is
proposed for bioacoustics classification. Archetypal analysis, a
form of convex non-negative matrix factorization, is used for
acoustic modelling at each level of this framework. At first
level, the input feature matrix is factorized into an archetypal
dictionary and corresponding convex representations. The rep-
resentation matrix obtained at the first level is further factorized
into a dictionary and convex representations at second level.
This hierarchical factorization continues until a desired depth
is achieved. We observe that the dictionaries at different lev-
els model complimentary information present in the data. The
atoms of the dictionary learned at the first layer lie on convex
hull of the data, thus try to model the extremal behaviour. On
the contrary, atoms of the deeper dictionaries lie on the convex
hull as well as inside the convex hull. Hence, these dictionaries
can simultaneously model the extremal and average behaviour
of the data. The convex representations obtained from these
deeper dictionaries are referred as deep convex representations.
Due to inherent sparsity, they result in efficient classification
performance. Through experiments on two available bioacous-
tics datasets, we show that the proposed approach yield compa-
rable or better results than state-of-art approaches.
Index Terms: deep convex representation, archetypal analysis,
bioacoustics classification

1. Introduction
Acoustic monitoring provides a convenient and passive way to
survey and monitor the animal and avian diversity of a par-
ticular habitat of interest [1, 2]. Acoustic monitoring makes
it possible to remotely monitor various ecosystems such as
swamps, marshes, remote islands or even aquatic ecosystems,
where manual monitoring is difficult or not feasible. Bioacous-
tic signal classification is an important module in any acoustic
monitoring system and can play a significant role in facilitating
the analysis of population trends of different animal and bird
species. Hence, bioacoustics classification can help in boosting
conservation efforts for species under the threat of population
decline or extinction.

Learned feature representations obtained by matrix factor-
ization on spectrograms or Mel frequency cepstral coefficients
(MFCC) have been employed successfully for various acoustic
and bioacoustic classification tasks such as acoustic scene clas-
sification [3], acoustic event detection [4], speech recognition
[5], bird audio detection [6] and bird species classification [7].
The intent of matrix factorization is to decompose a spectro-
gram or multivariate feature matrix, X, into a dictionary D and
representation A such that X ≈ DA with certain constraints

on both D and A. These representations can model the charac-
teristics present in the data more effectively than hand-crafted
feature representations [8]. Recently, there is an influx of deep
matrix factorization techniques [8, 9, 10] to obtain learned rep-
resentations. These techniques factorize a matrix X into multi-
ple factors as X ≈ D1D2D3 . . .DkAk where k is the depth
of factorization. This deep factorization helps in emphasizing
various latent attributes which can be helpful in analysing the
data better.

Motivated by the success of deep matrix factorization in
speech recognition [8], we propose a deep convex framework
targeting the task of bioacoustic classification. Archetypal anal-
ysis (AA) [11] form the crux of the proposed framework. AA
decomposes a matrix X as: X ≈ DA, where D is a dictio-
nary and A is convex-sparse representation. The dictionary,
D, is composed of archetypes or the extremal points. These
archetypes lie on convex hull of the data and are constrained to
be the convex combination of data points i.e., D = XB. The
archetypes provide compact and meaningful representation of
the data as they model the extremal or convex hull [12]. Al-
though convex-sparse representations, obtained using AA, have
been effectively used in various bioacoustics classification tasks
such as bird activity detection [12] and bird species classifica-
tion [7], AA suffers from a major disadvantage. It cannot model
the average behaviour of the data which is often defined by pro-
totypes such as the mean, the median or the medoid of the data.
Hence, it can be hypothesized that combining the extremal mod-
elling properties of AA with the behaviour defined by the pro-
totypes can provide better modelling capabilities.

AA is used in the proposed deep convex framework to fac-
torize the matrices at each level. At first level, an input matrix is
factorized into an archetypal dictionary and the convex-sparse
representation. The representation matrix obtained at the first
level is further factorized into a dictionary and a convex-sparse
representation at the second level. This hierarchical process is
continued till the desired level of the factorization. Fig. 1 illus-
trates the proposed deep convex framework. By the definition
of AA, the atoms of the dictionary obtained at the first level of
the framework lie on the convex hull or extremal. However, the
dictionaries obtain at the deeper levels show different modelling
capability as compared to the archetypal dictionary of the first
level. Some of the atoms of these deeper dictionaries lie on the
convex hull while others lie inside the convex hull or boundary.
The atoms lying on the convex hull model the extremal while
atoms lying inside the boundary can be seen as the representa-
tives of the average behaviour. Hence, these deeper dictionaries
have better data modelling capabilities than the typical archety-
pal dictionaries. The convex representations obtained using
these deeper dictionaries, designated as deep convex represen-
tations, are used for bioacoustics classification in this work.
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Figure 1: Illustration of the archetypal analysis based deep matrix factorization. Here a matrix X is factorized into K + 1 factors as:
X ≈ D1D2D3 . . .DKAK .

The rest of this paper is organized as follows. In Section
2, we discuss some of the methods proposed in the literature
for bioacoustic classification. In Section 3, the proposed deep
convex framework is described in detail. Performance analysis
and conclusion are in Sections 4 and 5, respectively.

2. Related Work
Many studies have targeted the problems of bioacoustics clas-
sification. In [13], a low resource (computation and memory)
framework, which utilizes mutual singular spectrum analysis
to obtain the bases defining the subspaces of the bioacoustics
classes, has been proposed. Canonical angles are used to mea-
sure the similarity between the subspaces to classify any test
audio signal. The low resource utilization of this framework
makes it suitable for acoustic monitoring applications. How-
ever, the reported classification performance of this framework
is not up-to the desired standards. In [14], a convolutional neu-
ral network (CNN) that simultaneously segments and classifies
bird vocalizations is proposed. This network bypasses the te-
dious task of segmentation but requires pixel-wise labelling of
spectrograms which is often not available. Quin et. al proposed
to use kernel-based extreme learning machines for classifying
bird vocalizations [15]. Extreme learning machine [16] is a
feed-forward neural network with random weights that does not
require back-propagation based training. Hence, in comparison
to deep neural networks (DNN), the amount of data required to
train these networks is usually less. Apart from neural networks,
SVM powered by dynamic kernels have also been utilized for
bird species classification [17] and bird activity detection [18].
In our earlier studies, we successfully utilized archetypal analy-
sis to obtain learned feature representations for the tasks of bird
species classification [7] and bird activity detection [12].

3. Proposed Framework
This section describes the process to obtain deep convex rep-
resentations using the AA based deep matrix factorization.
Firstly, we briefly explain the compressed super-frame (CSF)
feature, a representation shown to be suitable for bioacoustics
classification [7]. Then, the process to learn dictionaries in a
deep AA framework is explained in detailed, followed by the
process to obtain deep convex representations (using the learned
dictionaries) for the testing phase.

3.1. Obtaining compressed super-frames

The proposed framework factorizes a collection of CSFs [7]
for obtaining deep convex representations. These CSFs are de-
rived from the spectrogram by concatenating W neighbouring
frames. This concatenation process helps in effectively cap-
turing the frequency and temporal modulations which charac-

terize the vocalizations of different animal and bird species.
However, the concatenation also produces a high-dimensional
(Wm-dimensional, m is the number of frequency bins in a
frame) representation. In order to avoid the high dimension-
ality, these concatenated frames are compressed using ran-
dom projections (since they are sparse) resulting in CSFs (Z-
dimensional such that Z < Wm). More details about CSF
representation can be found in [7].

3.2. Learning dictionaries using AA based deep factoriza-
tion

To learn class-specific dictionaries, CSFs of the vocalizations
of a particular class are pooled together to form a matrix X ∈
RZ×L, where Z is the dimensionality of the CSFs and L is the
number of pooled CSFs. The feature matrix X is fed to the pro-
posed deep framework (as illustrated in Fig. 1) to obtain a dis-
criminative feature representation. In this work, we have used
a robust AA which utilizes a weighting function to decrease the
effect of outliers in the process of learning the archetypes. More
details about robust AA can be found in [7, 11].

At the first level, X is factorized using AA to obtain an
archetypal dictionary, D1 ∈ RZ×n1 (with n1 number of
archetypes) and a convex-sparse representation matrix A1 ∈
Rn1×L as X ≈ D1A1. This representation, A1, is passed
to the next level for further factorization. Again, at the sec-
ond level, A1 is factorized using robust AA to obtain dictio-
nary D2 ∈ Rn1×n2 (an under-complete dictionary with n2

archetypes such that n2 < n1) and convex-sparse represen-
tations A2 ∈ Rn2×L. At second level, we have the data
decomposition as: X ≈ D1A1 ≈ D1D2A2 = Dl2A2,
where Dl2 ∈ RZ×n2 is the global dictionary at this level.
Again A2 is passed to next level for further factorization and
this hierarchical process continues till a desired depth. By
generalization, at any level K, X is factorized as: X ≈
D1D2D3 . . .DKAK = DlKAK , where DlK ∈ RZ×nK

(with nK number of archetypes) is the global dictionary and
AK ∈ RnK×L is the convex-sparse representation matrix ob-
tained at the Kth level of the framework.

3.2.1. Geometric interpretation and visualization

The geometric interpretation of archetypes is well known. They
are the convex combination of the data and lie on the convex
hull. Thus, the dictionaries D1,D2 . . .DK at each layer lie
on the convex hull of the data from which they are learned i.e.,
X,A1 . . .AK−1 respectively. However, there is no convexity
constraint present on the atoms of DlK , as they are just the lin-
ear combination of atoms from the global dictionary obtained
at K − 1th level. This suggests that the atoms of the deeper
level global dictionary may lie inside the convex hull or in other
words, they can behave as prototypes instead of archetypes.
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Figure 2: Behaviour of atoms of the dictionaries, learned at three different levels of the proposed framework by factorizing data points,
uniformly and randomly sampled from a square (a), circle (b) and triangle (c).

Also, Dl2 (global dictionary obtained at second layer) is ob-
tained by the multiplication of D1, and D2, where D1 is mod-
elling the convex hull of X. Thus, due to the presence of D1 in
the calculation, some of the atoms of Dl2 can lie on or around
the convex hull of the data. This can be interpolated to the Kth
level and we can deduce that some of the atoms of the global
dictionary DlK also lies on convex hull due to the the presence
of D1 in calculation of DlK .

To illustrate this, we factorize 3 different randomly gener-
ated two-dimensional datasets using the proposed deep convex
factorization framework. For analysis, we employed only three
level factorizations, with n1 = 25, n2 = 15 and n3 = 10 be-
ing the number of archetypes learned at different levels. Fig. 2
illustrates the differences in the modelling capabilities of dif-
ferent dictionaries learned using the proposed framework. As
expected, Fig. 2 demonstrates that the atoms of Dl1, are lying
on the convex hull thereby modelling the extremal behaviour
of the data points. Whereas, the atoms of dictionaries Dl2 and
Dl3 of the second and third level, lie on the convex hull as well
as inside the convex hull. It can be inferred that the atoms lying
inside the hull are the representations of the prototypical be-
haviour of the data. The prototypes such as mean, median and
medoids are the representatives of the average behaviour of the
data points. Hence, deeper dictionaries combine the extremal
modelling behaviour of AA with the average behaviour of the
data. Thus, these deeper dictionaries have better data modelling
capability than the conventional AA factorization.

3.3. Classification: deep convex representations as features

Training: The class-specific global dictionaries learned at the
Kth level are concatenated to get the final dictionary, Df =
[D1

lkD
2
lk . . .D

q
lk] where Dq

lk ∈ RZ×nk is the Kth level global
dictionary of the qth class. To obtain deep convex representa-
tions for a given CSF xi, it is projected on a simplex defined by
the atoms of Df ∈ RZ×qnk (with qnk number of atoms):

ai = argmin
ai

ai∈∆qnk

‖xi−Dfai‖22, (1)

such that ∆qnk , [ai � 0, ‖ai‖1 = 1]. The convex repre-
sentations obtained using equation 1 are inherently sparse [11].
In this work, we have used the active-set algorithm, proposed
in [11], to solve equation 1. During the training process, deep
convex representations are obtained for all training CSFs using
equation 1 and a multi-class classifier such as support vector
machines (SVM) or random forest is trained using these repre-

sentations.
Testing: A test vocalization is represented as a set of CSFs,
X = [xt

1x
t
2 . . .x

t
n], where xt

n is the nth CSF in the test vo-
calization. A deep convex representation is obtained for each
CSF in X using Df . These convex representations are fed into
a trained classifier to get the CSF level decisions. Finally, a vot-
ing rule is applied on these CSF level decisions to classify X or
the corresponding animal or bird vocalization.

4. Performance Analysis
4.1. Dataset used

The proposed framework is evaluated on two datasets contain-
ing audio recording of bird and frog species. The first dataset
containing audio recordings of 50 different bird species is ob-
tained from three different sources. The recordings of 264 bird
species were obtained from the Great Himalayan national park
(GHNP). The recordings of 7 bird species were obtained from
the bird audio database maintained by the Art & Science centre,
UCLA [19]. The remaining 174 bird species audio recordings
were obtained from the Macaulay Library [20]. The recording
used here are 16-bit mono, sampled at 44.1 kHz and are of du-
rations varying from 15 seconds to 3 minutes. The information
about these 50 species along with the total number of recordings
and vocalizations per species is available at http://goo.
gl/cAu4Q1. The second dataset contains audio recordings of
10 different frog species used in [13] for bioacoustic classifica-
tion and is available at http://goo.gl/FFBzbb. This set
of recordings are 16-bit mono and are sampled of 44.1 kHz.

4.2. Experimental setup

Parameter setting: The vocalizations are segmented from audio
recordings using the semi-supervised method proposed in [21].
Only these segmented vocalizations are used for training and
testing. Each input audio recording is converted into a spectro-
gram using the STFT with 512 DFT points using a frame rate of
20 ms with 50% overlap. A window with context size W = 5
is used to obtain super-frame representations which results in
1285-dimensional (1285 = (257 × 5)) representation. Ran-
dom projections are used to compress these representations to
obtain 500-dimensional CSFs. The depth K of the deep convex
framework is set to 3. The orders of factorization i.e. n1, n2

and n3 are 128, 64 and 32, respectively. A random forest clas-
sifier with 100 trees is used for obtaining CSF level decisions.
All the parameters mentioned here are tuned empirically.
Comparative methods: The classification performance of
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Figure 3: Classification performance of different methods on 50
bird species (averaged across three folds)

deep convex representations (DCR) is compared with vari-
ous existing bioacoustics classification methods such as GMM,
SVM with dynamic kernels (intermediate matching kernel
(IMK), pyramid matching kernel (PMK), GMM-UBM mean
interval (GUMI) kernel, GMM supervector kernel (GMMSV)
and probabilistic sequence kernel (PSK)), spherical K-means
(SKM) with random forest based framework proposed in [22]
and a DNN based approach proposed in [17]. For SVM and
DNN based classification schemes, MFCC using delta and ac-
celeration coefficients are used as the feature representation. In
addition, the classification performance of convex representa-
tions obtained using class-specific AA (first layer of the frame-
work, K = 1) is also compared. Here, each class is modelled
by a dictionary with 128 atoms and a random forest with 100
trees is used for classification.
Train/test data distribution: A three-fold cross-validation is
used to compare the classification performance of the proposed
framework and the comparative methods. 33.33% of the vo-
calizations present in each fold (per class) are used for training
while the remaining are used for testing. The results presented
here are averaged across three folds.

4.3. Results and Discussion

4.3.1. Classification performance

The classification performance of the proposed framework and
other comparative methods on bird and frog datasets is shown
in Fig. 3 and Fig. 4 respectively. The following inferences can
be made from the analysis of these two figures:

• The classification performance of the proposed DCR is com-
parable to the DNN over both the datasets. DCR shows a
minute relative improvement of 0.22% and 0.21% over the
DNN on the bird and frog datasets respectively.

• DCR significantly outperforms the GMM, SVM pow-
dered by dynamic kernels and SKM on both the
datasets. DCR shows a relative improvement of
12.1%, 7.65%, 6.22%, 5.88%, 5.77%, 5.55% and
3.55% over the performances of GMM, PSK, GUMI,
GMMSV, PMK, SKM and AA respectively on the bird
dataset. Also, it exhibits a relative improvement of
13.7%, 9.23%, 7.87%, 6.93%, 6.51%, 7.24% and 4.83%
using different approaches on the frog dataset.

• Classification performance of different dynamic kernels is al-
most similar. Also, these kernels are significantly outper-
formed by SKM, AA and DNN on both the datasets.

• DCR, convex representations obtained at the third level of
the deep convex framework, performs better than AA (convex
representations obtained at K = 1). DCR exhibits a relative
improvement of 2.89% and 2.58% over AA on the bird and
the frog datasets respectively. This highlights the importance
of DCR over convex representations obtained using AA.
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Figure 4: Classification performance of different methods on 10
frog species (averaged across three folds)
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Figure 5: Variation in classification accuracy with the level of
factorization.

4.3.2. Depth of factorization vs. classification performance

The extent of factorization required in the proposed deep con-
vex framework depends on the dynamics of the data under pro-
cessing and the optimal value of K is difficult to generalize.
However, to establish the ideal depth of our deep framework
for the two datasets used in this study, we analysed the clas-
sification performances with different number of levels (K =
1, 2, 3, 4, 5 and 6). The orders of factorization at first to sixth
level of the proposed framework is set to 128, 64, 32, 24, 16 and
8. Fig. 5 depicts the performance of convex representations as
a function of depth. The analysis of this figure confirms that the
maximum classification accuracy is observed at K = 3 for both
the datasets. This justifies the use of three level factorization in
the proposed framework. Also, as the level of factorization is
increased, a small drop in classification accuracy is observed.
This can be attributed to the decrease in the number of atoms of
the dictionaries learned at 5th and 6th level of the framework.
Each dictionary at 5th level has 16 atoms while dictionaries at
6th level has 8 atoms. These number of atoms may not be effi-
cient to fully capture the variations present in the data, leading
to a drop in accuracy.

5. Conclusions
In this paper, we have proposed deep convex representations
obtained using a deep factorization framework for bioacoustics
classification. Our experiments indicate that the deeper con-
vex dictionaries has better data modelling capabilities than the
dictionaries learned using single level archetypal factorization.
The experimental observations highlight the advantages of these
deep representations over the convex representations obtained
using AA. Also, the classification performance of these deep
convex representations is comparable to the state-of-art bioa-
coustics classification methods. Future work may include the
application of deep convex representation for other audio clas-
sification tasks.
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