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Abstract
Replay attack poses the most difficult challenge for the devel-
opment of countermeasures for spoofed speech detection (SSD)
system. Earlier researchers mainly used vocal tract-based (seg-
mental) information for replay detection. However, during re-
play, excitation source-based information also gets affected (in
particular, degradation in pitch source harmonics at higher fre-
quency regions) due to recording environment and replay de-
vices. Hence, in addition to the vocal tract-based system in-
formation, we have also explored the excitation source-based
informations for SSD. In particular, we have used Linear Fre-
quency Residual Cepstral Coefficients (LFRCC) for replay de-
tection. The objective of this paper is to explore possible com-
plementary excitation (glottal) source information present in
the Linear Prediction residual-based features. Experiments per-
formed on the ASV Spoof 2017 Challenge database with Gaus-
sian Mixture Model (GMM) and Convolutional Neural Net-
work (CNN) classifiers. When we combined the source and
system-based information, we obtained on an average 28.77%
and 42.72% relative decrease in Equal Error Rate (EER) on de-
velopment and evaluation set, respectively. Furthermore, when
we perform score-level fusion of feature sets (for a fixed clas-
sifier) followed by a classifier-level fusion of GMM and CNN
(for a fixed feature set), we obtained reduced EER of 2.40% and
9.06% on dev and eval set, respectively.
Index Terms: Replay, Linear Prediction Residual, Convolu-
tional Neural Network.

1. Introduction
Automatic Speaker verification (ASV) system is a biometric
system that verifies speaker’s claimed identity from his or her
voice with the help of machines [1]. We would like ASV system
to be robust against various variations (such as microphone and
transmission channel, intersession, acoustic noise, etc). This ro-
bustness makes ASV system to be more vulnerable to various
spoofing attacks as it tries to nullify these effects. Hence, we
would like the system to be secure against spoofing attacks. The
various types of spoofing attacks included in the literature are
impersonation, replay, speech synthesis (SS), voice conversion
(VC) and twins [1–4]. Replay attack is a pre-recorded speech
samples of a target speaker used to get the access of a sys-
tem [4]. The ASV Spoof 2017 Challenge was mainly focused
on the development of robust countermeasure with the capabil-
ity of detecting various replay spoofing attacks in all the unseen
conditions. The challenge organizers provided the baseline sys-
tem Constant Q Cepstral Coefficients (CQCC) with Gaussian
Mixture Model (GMM) as a classifier [5]. Various countermea-
sures were proposed for detecting the replay spoofed speech in
recent ASV spoof 2017 Challenge [6]. Some of the counter-
measures focused on the normalization techniques [7], Instan-

taneous Frequency (IF)-based features were explored in [8, 9].
The high-resolution temporal-based features (such as single fre-
quency filtering (SFF)) were used in [10]. The high frequency-
band selection in CQCC feature set also performed better com-
pared to using the full-band CQCC feature set [11]. Some of
the deep learning methods were also studied in [12–14]. For re-
play spoofed speech detection (SSD), phase variations are not as
much prominent. The earlier study used high-dimensional fea-
ture sets, such as Log Magnitude Spectrum (LMS) and Residual
Log Magnitude Spectrum (RLMS) derived from the magnitude
spectrum of the speech signal to detect SS and VC spoofing at-
tacks [15]. The LMS captures the information from the magni-
tude spectrum, such as pitch (F0), formants and harmonics of a
speech signal. The formants (especially lower) are important for
Automatic Speech Recognition (ASR), however, not much use-
ful for spoofing detection and hence, RLMS feature set was de-
rived from the Linear Prediction (LP) residual of speech to sup-
press the effect of formants [15]. The excitation source is found
to contain speaker-specific information [16], [17]. Motivated by
this study, several methods for modeling the speaker-specific in-
formation from the source has been proposed [18–21]. The LP
residual is one of the techniques that captures more speaker-
specific information from the excitation source for replay SSD
task [15, 21, 22].
The key idea in our paper is to exploit flat vs. degraded spec-
tral characteristics of LP residual for natural and replay speech,
respectively. In particular, due to bandpass nature of frequency
response characteristics of replay devices, microphone, loud-
speaker and acoustic environment, the LP residual spectrum of
replayed speech is expected to experience degradation in spe-
cific frequency regions dictated by the replay mechanism w.r.t
given hardware. However, along with vocal tract-based sys-
tem information, we propose the source-based information for
the replay SSD. We have proposed the LP residual-based Lin-
ear Frequency Residual Cepstral Coefficients (LFRCC) feature
set. In cepstral-domain, the excitation source information is ob-
tained from the short-time magnitude spectrum of LP residual
magnitude of speech signal [18], [19]. The proposed feature
set is extracted by using linearly-spaced triangular filterbank
with pre and post-processing techniques (i.e., pre-emphasis fil-
ter and Cepstral Mean Normalization (CMN)). For the classi-
fication task, we have to used GMM and Convolutional Neu-
ral Network (CNN) as a classifier. The proposed feature set
is compared with CQCC, MFCC, and Linear Frequency Cep-
stral Coefficients (LFCC) feature sets and then we combined
the excitation source and vocal tract-based system information
to improve the performance of SSD system.

2. Linear Prediction (LP) Residual
The LP technique was originally used in system identifica-
tion literature followed by its novel application to speech cod-
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ing, where a new technique called as Linear Predictive Coding
(LPC) was developed [23]. In the LP analysis, each speech sam-
ple is represented by a linear weighted sum of past ‘p’ speech
samples, where p represents the order of linear predictor and
weights are called as Linear Prediction coefficients (LPCs) [23].
If s(n) is the current speech sample, then the predicted sample
is represented as:

ŝ(n) = −
p∑

k=1

aks(n− k), (1)

where ak are the LPCs . The difference between the ac-
tual speech sample (s(n)) and the predicted samples (ŝ(n)) is
known as LP residual, i.e., r(n) and is computed by using Eq.
(2) [23]:

r(n) = s(n)− ŝ(n) = s(n) +

p∑

k=1

aks(n− k), (2)

The LP residual signal is generated by the inverse filtering op-
eration of the speech signal using LP analysis, i.e.,

A(z) = 1 +

p∑

k=1

akz
−k, (3)

where A(z) is an inverse filter corresponding to all-pole LP
filter H(z), that represents the vocal tract-based system infor-
mation [24]. The excitation source-based information comple-
ments the vocal tract-based system information. The LP resid-
ual signal mostly contains the excitation source information.
The source information present in the LP residual depends on
the prediction order. The earlier study also shows that the LP
residual extracted using prediction order in the range of 8-20
(for 8 kHz sampling frequency) is the best choice for proper
representation of excitation source information [21]. To extract
the excitation source information, the LP residual can be repre-
sented in different domains, such as frequency, cepstral or joint
time-frequency [25]. In this work, the LP residual is processed
in the cepstral-domain for extracting the speaker-specific exci-
tation source information. In the cepstral-domain, the excitation
source information is obtained from the short-time LP residual
magnitude spectrum of speech signal [18], [19]. LP residual
coveys more information about the excitation source and hence,
we have used the LP residual-based features for the replay SSD
task [26].

3. Proposed Feature Set
The proposed feature extraction framework is shown in Figure1.
The speech signal is passed through a pre-emphasis highpass
filter to emphasize the high frequency components. The higher
formants (F3 and F4) explicitly used for speaker discrimination
are present in the higher frequency range and hence, features
from these high frequency regions are more important for replay
SSD task [27]. The pre-emphasis is a technique for balancing
the lower and higher frequency components [27]. The system
function of pre-emphasis is H(z) = 1 − αz−1, where α (i.e.,
filter coefficient) = 0.97 [27].

Figure 1: Schematic block diagram of proposed LFRCC feature
extraction.

The pre-emphasized speech signal is passed through LP
analysis block to obtain LP residual (r(n)) waveform. Further,
frame blocking and windowing is applied on LP residual wave-
form over a short duration of 25 ms with 10 ms frame shift.
After that, the power spectrum is computed for each LP resid-
ual frames. This power spectrum is passed through 40 linearly-
spaced triangular filterbanks to obtain the filterbank energies.
The linear triangular filterbank, bandwidth is equally distributed
throughout the entire available frequency range (for a given
sampling frequency) that makes it more reliable to extract the
features. To decorrelate the feature set, Discrete Cosine Trans-
form (DCT) is used to compute low-dimensional feature repre-
sentation. After DCT, we retain only few initial coefficients that
are further post-processed with CMN technique to reduce the
channel mismatch distortion effects [28]. The basic principle
behind CMN is based upon the behavior of the cepstrum un-
der the convolution distortions [29], [30]. It has been observed
that by using CMN technique results are improved [7]. CMVN
has been also found useful during ASV Spoof 2017 Challenge
campaign [31]. Furthermore, to capture transitional informa-
tion across feature vectors, static features are appended with
their ∆ and ∆∆ features.

3.1. Spectrographic Analysis

The spectral energy density of Mel spectrogram (Panel I),
RLMS using Mel (Panel II) and linear (Panel III) triangular fil-
terbank for natural and replayed speech is shown in Figure 2(a)
and Figure 2(b), respectively. The formants are clearly visible
with Mel spectrogram, while they do not appear clearly with
RLMS using Mel filterbank. In the LP residual spectrum, the
possible speaker-specific excitation source information is rep-
resented by the harmonic structure and hence, the formants are
not visible in the spectral density obtained from RLMS [25]. In
this work, linearly-spaced filterbanks are more significant than
the nonlinearly-spaced filterbanks (such as Mel triangular filter-
bank). The difference between Figure 2 (a) and Figure 2 (b) of
Panel II is that in the replayed speech, the LP residual spectrum
is relatively less dense or lesser spectral energy density than
of natural speech signal. Furthermore, when the spectral ener-
gies of Panel I are compared the, replayed speech signal have
more information in the higher frequency regions. There is also
some noticeable difference between the LP residual spectrum
in Panel III, for replayed speech. In particular, the LP resid-
ual spectrum is relatively more attenuated (less dense or less
spectral energy density) in higher frequency regions than the LP
residual spectrum of natural speech (highlighted by the dotted
circle). This decay in a spectrum is mainly due to the bandpass
filter characteristics of an impulse response of recording studio
and the strong attenuation of the loudspeaker (which is used in
the smartphone that can serve as replay device).

4. Experimental Setup
The ASV spoof 2017 Challenge dataset mainly focus on the
RedDots corpus, and its replayed speech [32]. The detailed
statistics of the database is provided in [6]. The proposed fea-
ture set, i.e., LFRCC is extracted from linear triangular filter-
bank using predictor order ‘p = 8’ with 25 ms window dura-
tion and 10 ms frame shift. The linear triangular filterbank is
computed with the frequency range from Fmin = 0 Hz and
Fmax = 8000 Hz with 40 subbands filtered signal. The feature
parameters used for LFRCC are 120-D (static+∆+∆∆). We
have compared our proposed feature set with CQCC, MFCC
and LFCC feature sets with the feature dimension of 90-D, 39-
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Figure 2: Comparison of spectral energy density obtained from the Mel spectrogram (Panel I), RLMS using Mel triangular filterbank
(Panel II) and RLMS using linear triangular filterbank (Panel III) of an utterance, ‘Actions speak louder than words’. Spectral energy
density for (a) natural speech signal, and (b) for its replayed version.

D, and 120-D, respectively. MFCC and LFCC feature sets are
extracted by using 40 subband (Mel and linear triangular) fil-
terbanks. We have used GMM classifier with 512 Gaussian
mixture components and CNN as a classifier to obtain the train-
ing models to classify the natural and spoofed speech. Final
scores are represented by Log-Likelihood Ratio (LLR). To de-
cide whether the test speech is natural or spoofed, LLR scores
are used. In particular,

LLR = log
P (X|H0)

P (X|H1)
, (4)

where P (X|H0) and P (X|H1) are the likelihood scores of nat-
ural and replay utterances (with hypothesisH0 andH1), respec-
tively. To obtained possible complementary information of the
proposed LFRCC feature set, score-level fusion is performed
with CQCC, MFCC and LFCC feature sets as per given Eq.
(5):

LLKfused = αLLKfeature1 + (1− α)LLKfeature2, (5)

where LLKfeature1 is a log-likelihood score of either CQCC
or MFCC or LFCC, whereas LLKfeature2 represent the score
of the LFRCC feature set. The fusion parameter (α) lies be-
tween 0 < α < 1 to decide the relative weight of scores. The
performance of the system is measured using Equal Error Rate
(EER) in % and Detection Error Trade-off (DET) curve based
on LLRs of natural and spoofed speech [33].

4.1. Convolutional Neural Network (CNN)

In this work, we have used the CNN as a classifier along with
GMM classifier for SSD task. We have used the same CNN
architecture proposed in [34]. This architecture consists of the
three convolutional layers followed by a max-pooling layer and
three fully connected (FC) layers with a softmax layer. A max-
pooling layer is used to downsample the data across the spatial
dimension. The input given to the CNN architecture is a 2-D im-
age of size d×N , where d represents the dimension of a feature
set andN represents the number of frames per second (N=100).
Similar to proposed CNN architecture, the first three convolu-
tional layers have a filter/kernel size of [d×3, 1×3, 1×3] di-
mension, respectively. Each convolutional layer has 128 sub-
band filters. The fourth layer is a max-pooling layer used with

1×2 stride on the output of the third convolutional layer. The
last three FC layer with 256 units (neurons) are used for com-
puting the final score. We have used dropout of 0.5 to all the
three FC layers to reduce the effect of overfitting. Furthermore,
we have used a softmax layer as an output layer for SSD task.
We have used 90 % overlapping data, which makes the network
to learn the data-dependency accurately. To train the network,
we used 64 batch size with ReLU activation function. In ad-
dition, Adam optimizer was used to train the network for 100
epochs. The CNN model was implemented using TensorFlow
library [35].

5. Experimental Results
5.1. Results with GMM and CNN Classifier

Table 1 shows the results (in % EER) for feature sets with two
classifiers, namely, GMM and CNN. We have compared our
proposed feature set with the baseline feature, namely, CQCC,
LFCC, and MFCC. The baseline system (CQCC) gave an EER
of 10.21 % and 28.48 % on dev and eval set, respectively. For
MFCC and LFCC feature set, the EER obtain on dev set is 11.21
% and 10.58 %, Whereas 31.30 % and 16.62 % on the eval set.
The proposed feature set LFRCC, show the significant reduc-
tion in EER (8.38 %) on dev set. However, for eval set the
reduction in EER (22.28 %) is not more significant. Similarly,
with CNN classifier the baseline gave the lower EER of 10.00
% and 28.42 % on the dev and eval set, respectively. The pro-
posed feature set gave an EER of 10.78 % (dev) and 29.81 %
(eval). With CNN classifier, LFCC feature set, show the signif-
icant reduction in EER on eval set is 15.10 %.

Table 1: Results with GMM and CNN classifier

Feature Set GMM CNN
Dev Eval Dev Eval

CQCC 10.35 28.48 10.00 28.42
MFCC 11.21 31.30 10.52 28.35
LFCC 10.58 16.62 11.05 15.10

LFRCC 8.38 22.28 10.78 29.81

5.2. Results with Score-level Fusion

To investigate the possible complementary information cap-
tured by various feature sets, we have used their score-level
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(a) (b)
Figure 3: DET curves for various replay SSD systems. (a) the individual DET curve of CQCC, MFCC, LFCC and LFRCC, their
classifier-level fusion (A, B, C, D) and score-level fusion (C+D) on dev set. (b) DET curves for same feature sets, their similar
classifier-level fusion and score-level fusion on eval set.

fusion as per given Eq. (5) (i.e., for a given classifier, scores
from two feature sets are fused). Results of score-level fusion
with both GMM and CNN classifiers are shown in Table 2. The
fused scores of LFRCC and MFCC have show the significant
reduction in % EER on the dev set (6.20 %) with GMM classi-
fier. While with CNN classifier, EER reduced to 6.45 % on dev
set. However, for eval set, the reduction in % EER of LFRCC
and LFCC is 14.31 % and 15.00 % with GMM and CNN clas-
sifiers. Thus, score-level fusion indeed helps to reduce the EER
for the proposed feature set.

Table 2: Results with score-level fusion

Feature Set GMM CNN
Dev Eval Dev Eval

LFRCC + CQCC 06.67 19.68 07.52 25.26
LFRCC + MFCC 06.20 21.77 06.45 26.15
LFRCC + LFCC 06.48 14.31 07.02 15.00

+ : Score-level fusion

5.3. Results with classifier-level fusion

The results of the classifier-level fusion (i.e., for a given fea-
ture set, scores from GMM and CNN classifiers are fused) for
CQCC, MFCC, LFCC and proposed feature sets are shown in
Table 3. The classifier-level fusion helps to reduce the EER
more than the individual systems for all the feature sets. The

Table 3: Results with classifier-level fusion (GMM+CNN) for a
given feature set

Feature CQCC MFCC LFCC LFRCC
Set (A) (B) (C) (D)
Dev 04.06 06.14 05.05 05.57
Eval 22.96 24.46 09.80 19.82

EER with classifier-level fusion reduced to 4.06 %, 6.14 %, 5.05
% and 5.57 % for CQCC, MFCC, LFCC and LFRCC, respec-
tively. On eval set, it is reduced to 22.96 % (CQCC), 24.46 %
(MFCC), 9.80 % (LFCC) and 19.82 % (LFRCC). With CQCC
feature set, we obtained the lower EER of 4.06 % (dev) and
22.96 % (eval) whereas with LFCC feature set, we obtained
an EER of 5.05 % (dev) and 9.80 % (eval). For each feature
set, scores are obtained using GMM and CNN classifiers fol-
lowed by their classifier-level fusion. Finally, the resultant rel-
ative scores from each feature sets (i.e., A, B, C and D shown
in Table 3) are further fused at the score-level in Table 4. The

Table 4: Results with score-level fusion followed by the
classifier-level fusion

Feature Set Dev Eval
A+D 01.83 18.24
B+D 01.69 18.01
C+D 02.40 09.06

A, B, C and D as per Table 3.

lower EER obtained using score-level fusion (B+D) is 1.69 %
(dev) and 18.01 % (eval) and score-level fusion (C+D) gave an
EER of 2.40 % (dev) and 9.06 % (eval). The performance is also
shown by DET curves of various feature sets, such as CQCC,
MFCC, LFCC, and LFRCC with both GMM and CNN classi-
fiers, their classifier-level and score-level fusion in Figure 3 (a)
for dev set and in Figure 3 (b) for eval set. On dev set, score-
level fusion (C+D) is clearly distinct at all the operating points
of the DET curve. On eval set, score-level fusion (C+D) have
significantly a lower false alarm and miss probabilities in DET
curve as compared to the CQCC, MFCC and LFCC feature sets.

6. Summary and Conclusions
In this study, along with vocal tract-based system information,
we have proposed the use of excitation source information by
processing the LP residual signal using linear triangular filter-
bank. The objective of this work is to exploit possible com-
plementary information present in the LP residual-based fea-
ture set which indeed helps in improving the performance of
replay SSD. We have also shown the significance of linear tri-
angular filterbank and Mel triangular filterbank during feature
extraction. In linear filterbank, bandwidth is equally distributed
throughout all the frequency components that makes it more re-
liable to extract the features. By combining the system and ex-
citation source-based information, the performance of the com-
bined system is improved over the individual system. Moreover,
the results obtained with their classifier-level fusion indeed help
to reduce the EER from the individual EER of all the feature
sets. Our future work includes exploring Long-Term Prediction
(LTP) and Non Linear Prediction (NLP) residual-based feature
for replay SSD task.
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