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Abstract
Constant-Q transform (CQT) has demonstrated its effectiveness
in anti-spoofing feature analysis for automatic speaker verifi-
cation. This paper introduces a statistics-plus-principal infor-
mation feature where a short-term spectral statistics informa-
tion (STSSI), octave-band principal information (OPI) and full-
band principal information (FPI) are proposed on the basis of
CQT. Firstly, in contrast to conventional utterance-level long-
term statistic information, STSSI reveals the spectral statistics
at frame-level, moreover it provides a feasibility condition for
model training while only small training database is available.
Secondly, OPI emphasizes the principal information for octave-
bands, STSSI and OPI creates a strong complementarity to en-
hance the anti-spoofing feature. Thirdly, FPI is also of comple-
mentary effect with OPI. With the statistical property over CQT
spectral domain and the principal information through discrete
cosine transform (DCT), the proposed statistics-plus-principal
feature shows reasonable advantage of the complementary trait
for spoofing detection. In this paper, we setup deep neural net-
work (DNN) classifiers for evaluation of the features. Experi-
ments show the effectiveness of the proposed feature as com-
pared to many conventional features on ASVspoof 2017 and
ASVspoof 2015 corpus.
Index Terms: constant-Q transform, anti-spoofing countermea-
sure, automatic speaker verification

1. Introduction
Conventional speaker verification system becomes frail or in-
competent while facing attack from spoofed speech. There are
three main challenging attacks from different sources, synthetic
speech [1, 2, 3], voice converted speech [4, 5, 6], and playback
speech [7, 8, 9].

Countermeasure of spoofing attacks has been studied
presently, focusing on feature and classifier respectively. The
features used for anti-spoofing detection can be generalized
into three categories: Long-term spectral statistics based feature
[10], phase spectrum based feature [11, 12] and power spec-
trum based feature. In [13], two types of long-term spectral
statistics, i.e. first and second order statistics over the entire ut-
terance in each of DFT frequency bin, are concatenated to form
a single vector representation of an utterance. Typical phase
spectrum based features are the cosine normalized phased fea-
ture (CNPF), group delay (GD)[14], instantaneous frequency
(IF), and instantaneous frequency cosine coefficients. There are
many variants of the power spectrum based feature such as the
scattering cepstral coefficients (SCC) [15], speech-signal fre-
quency cepstral coefficients (SSFCC) [3], and constant-Q cep-
stral coefficients (CQCC) [16, 17]. CQCC is the most widely
used feature; it was firstly applied in synthetic and voice con-
verted speech detection [18], then used in playback speech de-

tection [19, 20, 21]. CQCC adopts a constant-Q transform
(CQT) for the spectral analysis. The CQT employs geometri-
cally spaced frequency bins. In contrast to the Fourier trans-
form which imposes regular spaced frequency bins and hence
leads to variable Q factor, the CQT ensures a constant Q factor
across the entire spectrum. This trait allows the CQT to provide
higher spectral resolution at lower frequencies while providing
a higher temporal resolution at higher frequencies, as a result
the distribution of the CQT time-frequency resolution is con-
sistent with human hearing characteristics. Founded upon the
basis of CQT, the CQCC has been reported to achieve effective
performance for speech synthesis and voice conversion spoof-
ing detection [18].

In this paper, we aim to study complementarity of sub-
features that are used to form concatenated features through
constant-Q transformation. Different from the conventional
CQCC feature, each sub-feature is of complementary informa-
tion to one another. The first sub-feature is STSSI that is con-
sidered to carry the statistic information at frame level, in which
the first- and second-order statistics over different CQT-spectral
bins are obtained. The second sub-feature is OPI, which is to
provide the octave principle information, where octave segmen-
tation and discrete cosine transform (DCT) are applied. And the
third sub-feature is from FPI, it formulates the full-band prin-
ciple information from the CQT spectrum. Finally, the three
sub-features are combined to generate its delta and accelera-
tion coefficients as a feature for spoofing detection. We refer to
the proposed feature as constant-Q statistics-plus-principal in-
formation coefficient (CQSPIC). In this paper, we adopt deep
neural network (DNN) as the means for the feature evaluation.

The remainder of the paper is organized as follows. The
CQT is briefly introduced in Section 2. In Section 3, we de-
scribe in detail the proposed CQSPIC feature. Section 4 gives
the experimental results and corresponding analysis, which is
based on ASVspoof 2017 corpus and ASVspoof 2015 corpus.
Finally, Section 5 concludes the paper.

2. Constant-Q Transform
CQT is related to the discrete Fourier transform (DFT) [22].
Different from DFT, the ratio of center frequency to bandwidth,
Q, is constant, which makes CQT spectrum have a higher fre-
quency resolution in low frequency and higher temporal resolu-
tion in higher frequency.

For a discrete time domain signal x(n), its CQT, Y (k, n),
is defined as follows:

Y (k, l) =

lM+bNk
2
c∑

m=lM−bNk
2
c

x(m)a∗k(m− lM −
Nk

2
) (1)
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where k = 1, 2, ...,K denotes the frequency bin, l is the time
frame index and M the frame shift size so that n = lM , a∗k
is the complex conjugate of ak, and b·c rounds a value to the
nearest integer towards negative infinity. The basic function ak
is complex-valued time-frequency atom

ak(t) =
1

C
ν(

t

Nk
)exp[i(2πt

fk
fs

+ φk)] (2)

where fk is the centre frequency of the kth bin, fs is the sam-
pling frequency, and ν(t) is a window function (e.g. Hanning
window). φk is the phase offset. C is a scaling factor given
below

C =

bNk
2
c∑

m=−bNk
2
c

ν(
m+ Nk

2

Nk
) (3)

Since a bin spacing is desired to be of equal temperament,
the center frequency fk is set by

fk = 2
k−1
B f1 (4)

where f1 is the centre frequency of the lowest-frequency bin, B
is the number of bins per octave-band.

Recently, CQCC was reported to be sensitive to the gen-
eral form of spoofing attack so it becomes an effective spoofing
countermeasure [18].

3. Proposed Constant-Q
Statistics-plus-Principal Information

Coefficient (CQSPIC)
In this paper, we aim to seek an effective feature with dif-
ferent complementary characteristics for spoofing detection on
the basis of the advantages of CQT. Consequently, we pro-
pose a constant-Q statistics-plus-principal information coeffi-
cient (CQSPIC) that includes three characteristics: STSSI, OPI
and FPI.

3.1. Short-term Statistics Information

In spoofing detection, we face a situation where there is insuffi-
cient prior knowledge about the characteristics to distinguish a
spoofed speech from genuine speech. It is known that the two
kinds of speech signals have two different statistical character-
istics.

In [23], long-term spectral statistics (LTSS) is reported to
be effective for spoofing detection in speaker verification sys-
tem. It is believed that the mean and variance of the spectral
amplitude distributed over either a long-term period of certain
spectrum or a range of frequencies at a time frame can provide
good traits to distinguish the two different kinds of speech sig-
nals. However, LTSS is not suitable for small training database
due to insufficient feature data generated. In this paper, we pro-
pose a short term statistics at frame level for the purpose of
solving the small training data issue and build complementary
characteristics on the basis of CQT.

As mentioned above, there are two short-term statistics,
one is first-order statistics (mean) and the other is second-order
statistics (variance). There are four modules in STSS extrac-
tion: CQT, magnitude spectrum, short-term statistics and log.
The module of CQT is also used to convert speech from the time
domain to the frequency domain, magnitude spectrum is used to
calculate magnitude spectrum, short-term statistics module is to
estimate STSSI from magnitude spectrum, and the log module
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Figure 1: Block diagram of short-term statistics extraction.

is used to obtain mean and variance in log-scale. Fig. 1 shows
block diagram of short-term information statistics extraction.
To estimate STSSI cross frequency bins at frame-level, one is
to estimate the statistics over full frequency-band, the other is
to compute the statistics over each individual subband such as
the octave-band. To generalize the statistics formula, we give
the subband statistics as follows. Supposing |Y (k, l)| is a frame
magnitude spectrum of Y (k, l) The mean of the CQT spectral
amplitude over subband, ms, is defined by

ms(l) =
1

Ks −Ks−1

Ks∑

k=Ks−1+1

|Y (k, l)| , s = 1, ..., S

(5)
And the variance of the CQT spectrum amplitude over subband
is defined by

σ2
s(l) =

1

Ks −Ks−1

Ks∑

k=Ks−1+1

(|Y (k, l)| −ms(l))
2 (6)

where σ2
s(l) represents variance of |Y (k, l)|, S denotes the

number of subbands, K0, ...,KS is the frequency index of sub-
bands where K0 = 0 and KS = K. Thus, the full-band STSSI
becomes the special case of the subband STSSI when S = 1.

Experiments on ASVspoof 2017 database show the octave-
band statistics is not competent with full-band statistics for
spoofing detection. It may be because that there are insufficient
frequency bins to approximate the statistics in an octave-band.
Subsequently, we only focus on reporting the performance with
full-band statistics.

3.2. Octave-band Principal Information

The term ‘octave’ is derived from the western musical scale and
is therefore common in audio electronics [24, 25]. The Law of
Octaves states that we can use an octave of a frequency to the
same effect as the frequency itself. An octave is the doubling or
halving of a certain frequency. The speech frequency range can
be separated into unequal segments called octaves. A band is
defined to be an octave in width when the upper band frequency
is twice the lower band frequency.

On the other hand, in contrast to DFT where frequency re-
gion of each frequency bin is equal, the frequency region of dif-
ferent frequency bin in CQT is different. The centre frequency
bin of CQT complies with a nonlinear distribution with (4), we
have

fnB+k = 2
nB+k−1

B f1 = 2nfk = 2f(n−1)B+k

n = 1, ..., N
(7)

whereN denotes the number of octave-bands. So we haveK =
N ∗ B. From (7) we can see that fB+1 = 2f1 , f2B+1 =
2fB+1 , ... , fNB+1 = 2f(N−1)B+1 . Therefore, B frequency
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Figure 2: Procedure of the OPI extraction.

bins (i.e. f1, f2, ..., fB) between f1 and fB+1 form the first
octave band; B frequency bins between fB+1 and f2B+1 (i.e.
fB+1, fB+2, ..., f2B) form the second octave band; ...; and B
frequency bins (i.e. f(N−1)B+1, f(N−1)B+2, ..., fNB) between
f(N−1)B+1 and fNB+1 form theN -th octave band. As a result,
there are B frequency bins in each of octave-band with CQT.
The higher an octave-band is, the larger frequency region the
corresponding frequency bin occupies.

In this paper, we propose an octave principal information
(OPI) on the basis of CQT. In OPI, octave segmentation is ap-
plied, and it is followed by a DCT to generate principal infor-
mation. In particular, OPI includes five modules: CQT, power
spectrum, octave segmentation, log and DCT. The p-th princi-
pal coefficients of the n-th octave-band is given using discrete
cosine transform as follows:

Xnp(l) =
nB∑

k=(n−1)B+1

log
(
|(Y (k, l)|2

)
cos
[ π
B
(k +

1

2
)p
]

p = 1, 2, ..., P

(8)

P denotes the number of principal coefficients corresponding to
an octave-band, and P � B. Finally, the X1{1:P}, X2{1:P},
..., Xn{1:P}, ..., XN{1:P} are concatenated to form a N ∗ P
dimension of OPI vector at the l-th frame. Fig. 2 depicts the
procedure of the OPI. In our experiment, we set B to be 96, P
to be 12, and N to be 9.

3.3. Full-band Principal Information

In this paper, we propose a full-band principal information (FPI)
as complementary characteristics of the OPI. Different from the
CQCC with linearized log power spectrum resampling, the FPI
directly applies DCT on logarithm power spectrum in CQT do-
main. For the FPI feature extraction, there are four modules in-
cluding CQT, power spectrum, logarithm and DCT. In the FPI,
the r-th principal coefficients are given via DCT as follows:

Zr(l) =
K∑

k=1

log
(
|(Y (k, l)|2

)
cos
[ π
K

(k +
1

2
)r
]

(9)

r = 1, 2, ..., R where R is the number of principal coefficients.
Fig. 3 shows the block diagrams of the FPI procedure.
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Figure 3: Block diagram of FPI extraction.
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Figure 4: Block diagram of the extraction of the proposed
constant-Q statistics and principal information coefficient.

3.4. Combination, Delta and Acceleration

The proposed CQSPIC is formed by combining the three sub-
features: STSSI, OPI and FPI. OPI and FPI are complemen-
tary because they represent octave spectral information and full-
band spectral information respectively. STSSI represents statis-
tics, it is of complementarity with both OPI and FPI.

The STSSI (either mean or variance), OPI and FPI are con-
catenated, delta and double-delta of the concatenated feature are
applied to produce the final CQSPIC feature. Fig.4 illustrates
the block diagram of CQSPIC feature extraction.

In playback speech detection, our experiment shows that
the STSSI mean from STSSI has discriminative property rather
than variance. In synthetic or voice converted speech detection,
the STSSI variance can capture the dynamics between natural
and synthetic speech. Therefore, we select the STSSI mean,
OPI and FPI to form the CQSPIC feature for playback spoof-
ing detection, while we select the STSSI variance, OPI and FPI
to form the CQSPIC feature for synthetic or voice conversion
speech detection.

4. Performance Evaluations
In this paper, the anti-spoofing performance of the proposed
CQSPIC feature is evaluated in terms of equal error rate (EER)
and average EER (AEER) on two automatic speaker verifica-
tion (ASVspoof) databases: ASVspoof 2015 [1] and ASVspoof
2017 [26, 27]. In CQT computation, all configuration param-
eters are set to be the same as those in [18]. For OPI, we
set P = 12, N = 9, as a result, there are 108 dimensions
of static OPI. For FPI, R is set to 12, it means the FPI has
12 dimensions of its principal vector. In the feature evalua-
tion, we trained DNN models with stochastic gradient descent
(SGD) as spoofing detection platform using computational net-
work toolkit (CNTK) [28]. In particular, different DNN models
are trained corresponding to different features such as MFCC,
CQCC, proposed OPI and final proposed CQSPIC. Here, the
static dimension of CQCC and MFCC are 12 and 13 respec-
tively. In this evaluation, the input layer of the DNN is the fea-
ture coefficients of eleven spliced frames centred by the current
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Table 1: The experiment results for ASVspoof 2015 evaluation set using CQSPIC-D, CQSPIC-DA and CQSPIC-A.

Feature Known attack Unknown attack AEER
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

CQSPIC-D 0 0.004 0 0 0.024 0.018 0.004 0.009 0 0.860 0.092
CQSPIC-DA 0 0 0 0 0.009 0.006 0 0.008 0 0.820 0.084
CQSPIC-A 0 0 0 0 0.004 0 0 0.008 0 0.368 0.038

frame. The feature coefficients of each frame can be the static
feature coefficient, or its delta, or its double delta (i.e. accel-
eration), or their combining feature. In our experiment, it is
observed that delta or double-delta or their concatenated fea-
tures without static coefficients may give better performance
than those with static coefficients in spoofing detection; and
similar phenomenon is also reported in [29] and [18]. During
evaluation, we use D and A to represent delta and acceleration
respectively.

4.1. ASVspoof 2015 Evaluation

The ASVspoof 2015 database only contains speech synthesis
and voice conversion attacks produced through logical access.
Only five types of attacks are in the training set marked as S1,
S2, ..., S5, while ten types are in the evaluation set marked as S1,
S2, ..., S10. It creates known and unknown attacks for evalua-
tion. For evaluation on ASVspoof 2015, we use 16,375 training
utterances to train the deep neural network (DNN) model, which
has four hidden layers with 512 nodes per layer and one output
layer with 2 nodes indicating genuine and spoofed speech.

For speech synthesis and voice conversion, the variance
component of STSSI is found to give good performance
and therefore used to form the proposed CQSPIC. In other
words, the CQSPIC for ASVspoof 2015 platform comes from
the combination of OPI, FPI and variance of STSSI, i.e.
OPI+FPI+STSSIv. Table 1 shows the experiments result (EER)
on ASVspoof 2015 evaluation set using CQSPIC-D, CQSPIC-
A and CQSPIC-DA. It can be seen that CQSPIC-A performs
the best with AEER of 0.038%. In the next experiments for
ASVspoof 2015, we will use acceleration (i.e. ‘A’) as the fi-
nal features. Table 2 shows the comparison between different
features for ASVspoof 2015 under the same DNN structure.

Table 2: Performance comparison with different features on
ASVspoof 2015 in terms of AEER(%).

Feature AEER Feature AEER
FPI 0.392 MFCC 2.602
OPI+FPI 0.042 CQCC 0.184
OPI+FPI+STSSIm 0.046 OPI 0.134
OPI+FPI+STSSImv 0.045 OPI+CQCC 0.066
OPI+FPI+STSSIv 0.038 OPI+CQCC+STSSIv 0.062

4.2. ASVspoof 2017 Evaluation

Different from ASVspoof 2015 which focuses merely on speech
synthesis and voice conversion, ASVspoof 2017 is designed to
detect playback attack. In ASVspoof 2017 evaluation, 4,726 ut-
terances in both training and development sets are used to train
the model which is used for evaluation set. A series of four-
layer DNN including two hidden layers of 512 nodes each layer
are trained, while the input and output layers are the same as the
DNN models in the ASVspoof 2015 evaluation.

It is observed that the mean from STSSI is more help-
ful than variance for the playback situation. The CQSPIC for
ASVspoof 2017 evaluation is from the combination of OPI, FPI,

CQSPIC-D CQSPIC-A
12.39 16.95

0 5 10 15 20

EER CQSPIC‐D

CQSPIC‐A

CQSPIC‐DA

Figure 5: Experimental result (EER(%)) comparison among
CQSPIC-D, CQSPIC-A and CQSPIC-DA on ASVspoof 2017
evaluation set.

and STSSI’s mean, i.e. OPI+FPI+STSSIm. We investigate the
performance of delta (D), accelration (A) and their concatenated
(DA), and Fig.5 shows the experimental results. We can see that
the CQSPIC-DA is the best in terms of EER. In the next experi-
ments for ASVspoof 2017, we will use DA as the final features.
Table 3 shows the comparison between different features for
ASVspoof 2017 under the same DNN structure.

Table 3: Performance comparison with different features on
ASVspoof 2017 in terms of EER(%).

Feature EER Feature EER
FPI 24.67 MFCC 18.36
OPI+FPI 13.81 CQCC 15.05
OPI+FPI+STSSImv 11.19 OPI 14.08
OPI+FPI+STSSIv 11.66 OPI+CQCC 13.77
OPI+FPI+STSSIm 11.09 OPI+CQCC+STSSIm 11.40

From the above experimental results, we can see that the
proposed CQSPIC (i.e. OPI+FPI+STSSIv for ASVspoof 2015
and OPI+FPI+STSSIm for ASVspoof 2017) greatly outper-
forms the conventional CQCC and MFCC.

5. Conclusion
On the basis of the advantage of CQT, we proposed a use-
ful feature, CQSPIC, by extracting information from octave-
band, full-band and short-term statistics for spoofing detection
in speaker verification system. The complementarity of the sub-
features have been investigated for the different types of spoof-
ing attacks: synthetic speech, voice converted speech, and play-
back speech. Compared to conventional MFCC and CQCC fea-
tures, CQSPIC brings more channel information in playback
speech detection and more artifacts in synthetic (voice con-
verted) speech detection. The experimental results show that
the CQSPIC outperforms CQCC and MFCC. And the comple-
mentarity of FPI to OPI+STSSI is better than that of CQCC.
The combination of OPI, FPI and STSSI is reasonable and use-
ful for spoofing detection.
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