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Abstract

Recently there has been a surge of interest is learning speaker
embeddings using deep neural networks. These models ingest
time-frequency representations of speech and can be trained to
discriminate between a known set speakers. While embeddings
learned in this way perform well, they typically require a large
number of training data points for learning. In this work we
propose deeply fused speaker embeddings - speaker represen-
tations that combine neural speaker embeddings with i-vectors.
We show that by combining the two speaker representations we
are able to learn robust speaker embeddings in a computation-
ally efficient manner.

We compare several different fusion strategies and find that the
resulting speaker embeddings show significantly different veri-
fication performance. To this end we propose a novel fusion ap-
proach that uses an attention model to combine i-vectors with
neural speaker embeddings. Our best performing embedding
achieves an error rate of 3.17% using a simple cosine distance
classifier. Combining our embeddings with a powerful Joint
Bayesian classifier, we are able to further improve the perfor-
mance of our speaker embeddings to 2.22%, which gave a 7.8%
relative improvement over the baseline i-vector system.

Index Terms: speaker embeddings, recurrent neural networks,
i-vectors, attention model, fusion

1. Introduction

Speaker verification tackles the problem of authenticating a per-
son’s identity based on their voice. The problem is setup as
follows. Given two recordings, we need to determine if they
belong to the same person or not. In this work we consider
text-independent speaker verification, wherein there are no con-
straints placed on the phonetic content of the test recordings [1].
Over the past decade, the i-vector speaker representation has
emerged as the dominant approach in text-independent speaker
verification [2]. When i-vectors are combined with a probabilis-
tic linear discriminant analysis (PLDA) classifier, state-of-the-
art performance is achieved on a number of standard datasets,
including the one used in this work. A great strength of the i-
vector representation is that it can be learned in an unsupervised
way. In doing so, the approach works best when the recordings
that the i-vectors are derived from are relatively long (greater
than 30 seconds).

A recent trend in the speaker verification community involves
using deep neural networks to learn speaker representations [3,
4,5, 6, 7]. The task is two fold. First a recording of arbitrary
length needs to be transformed into a representation of fixed
size, and ideally, of low dimensionality. More importantly, this
representation needs to be discriminative, so as to allow us to
easily discriminate between speakers. We hence forth refer to
such representations as speaker embeddings.

In this work we make use of Recurrent Neural Networks (RNN)
for learning neural speaker embeddings. RNN’s are a natural
choice for modeling time-series data such as speech, and have
been used extensively in speech and speaker recognition [8, 9].
We draw inspiration from multi-modal machine learning to ex-
plore different strategies for learning joint speaker representa-
tions by fusing i-vectors and neural speaker embeddings. Joint
representations are formed by projecting unimodal representa-
tions into multi-modal space [10]. Recently, model-based fu-
sion techniques using neural networks have become popular in
several domains including visual question answering, gesture
recognition and video description generation [11, 12, 13].
From our experiments we find that by fusing i-vectors with
recurrent speaker embeddings during model learning leads to
robust embeddings that perform well even with a simple co-
sine distance classifier. We also note that our model is able to
learn speaker embeddings with significantly fewer training data-
points compared to approaches that only time-frequency repre-
sentations of speech for learning embeddings [3]. These mod-
els require many millions of data points for training, whereas
our fused model is able to learn speaker embeddings using
~750000 data-points.

The remainder of the paper is organized as follows. We begin
with an overview of our deeply fused speaker embeddings. We
highlight different ways in which embeddings can be learned
by combining recurrent networks and i-vectors. Moreover, we
show from our experiments that the way in which fusion is per-
formed is crucial to the verification performance of the embed-
dings. Our best model makes use of a content-based attention
model, that uses embedded i-vectors to attend over RNN hidden
states. This model achieves an equal error rate (EER) of 3.17 %
using a simple cosine distance classifier, and further improves
to 2.22% when combined with a Joint Bayesian classifier. We
also perform an experiment to determine which components of
our fused embeddings contribute the most to speaker verifica-
tion performance. We conclude with some final remarks and
propose directions for future work.

2. Deep Fusion Speaker Embeddings

The idea of combining i-vectors with the input to a neural net-
work is not a new one, and is widely used for speaker adapta-
tion in speech recognition systems [14]. In the context of this
work, the i-vectors provide speaker and channel information at
a global scale, as they are extracted using full recordings. On
the other hand, neural speaker embeddings are trained on short
snippets of speech and thus capture this information on a shorter
time-scale. Unlike the approach in [14], which is an early fusion
approach, we are primarily interested in late fusion strategies.
Our main contribution is to propose a novel approach for late fu-
sion based on neural attention models. Fusion techniques have
also been popular in the speaker verification, albeit at the score
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level [15]. Recently it was shown that a neural speaker embed-
dings fuse well with i-vectors at the score level [16]. Drawing
inspiration from this result, our goal is to fuse i-vectors into our
neural speaker embeddings during model learning.

Figure 1. illustrates the general framework we use to learn
speaker embeddings in this work. The raw speech, represented
by 40 dimensional log filterbank features is processed by a re-
current neural network. We used 1 second chunks of audio for
RNN training. The i-vector corresponding to the same record-
ing is processed by a multi-layer perceptron (MLP). The key
component of our model is the embedding module, which de-
cides how to combine the RNN hidden states into a single vec-
tor. The output of the embedding module is then concatenated
with the output of the MLP before being fed to the output layer
of the network.
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Figure 1: Deeply Fused Speaker Embedding Framework

2.1. Recurrent Neural Networks

Recurrent Neural Networks (RNN) extend feed-forward net-
works in order process sequential data of arbitrary length. This
is achieved through a recurrent connection between its hidden
states, and by sharing weights across time-steps of the input se-
quence [17]. These features allow RNNs to capture temporal
dependencies in the data. Consequently, RNNs have been used
extensively in a variety of machine learning problems ranging
from translation and dialogue systems to speech and speaker
recognition.

hiy = f(Winx + Whrhi—1 + b) (1)

Equation 1 represents the output computed by a RNN for a
given time-step t. x; is the input at this time and h;—; is the
RNN hidden state at the previous time-step. While RNNs are
‘deep in time’ by design, performance can often be improved by
stacking multiple RNN layer atop one another. In this work we
make use of a gated RNN variant known as Long Short Term
Memory (LSTM) networks [18], which has been popular due
to its robustness to the vanishing gradient problem that plagues
vanilla RNNs. Equation 1. also implies that RNNs output a
hidden state corresponding to every time-step in a sequence. In
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this work we show that these hidden states can be combined in
a variety of way, and certain combinations lead to significantly
better speaker embeddings than others.

2.2. Multi Layer Perceptron

As mentioned in the introduction, i-vectors constrain the
speaker and channel variability is a recording to lie in a low
dimensional subspace. Consequently, we could use the i-vector
directly in our model by either concatenating it to the RNN in-
put or to the output of the embedding module. However, we
found it beneficial to non-linearly transform the i-vectors us-
ing a single layer feed forward network. More importantly, our
model benefited from using separate processing streams for the
raw speech and the i-vectors. Non-linearly projecting the i-
vector also gives us more flexibility in terms of combining it
with the output of the RNN. We provide details of these combi-
nation strategies in the next section.

2.3. Embedding Module

The embedding module (green box in figure. 1) represents the
key component of our proposed method. This module decides
how to combine the sequence of hidden states output by the
RNN into a single vector. A simple approach is to take the
RNN hidden state corresponding to the last time step of the se-
quence and treat it as the sequence ‘summary’. This summary is
then concatenated to the non-linearly transformed i-vector be-
fore being fed to the output layer of the network. We refer to
this model as ‘last-step’ in our experiments.

We now describe two other ways of deriving a single vector
from a set of hidden states based on the idea of neural atten-
tion models. Attention models provide a mechanism that allows
neural networks to focus on a specific portion of its input. The
approach was made popular by using one RNN to attend over
another RNN [19]. Crucially this mechanism is differentiable,
which implies that the attention parameters can be learned along
with the rest of the parameters of the network.

2.3.1. Self-Attention

Attention models have been most successful in sequence to se-
quence mapping problems [19]. Neural networks can also use
attention to highlight the most relevant parts of the input in clas-
sification problems [20]. This type of attention is known as
monotonic or self attention. In this work we use the simple
monotonic attention model proposed in [21, 22].

e; = a(hl) (2)
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=~ 3)
T ST copler)
T
c=Y aih @)
t=1

The self attention mechanism is driven by a small neural net-
work a that assigns a score to each hidden state. These scores
are then used to calculate a weighted sum of the hidden states.
This weighted average is then concatenated to the MLP output
before being fed to the output layer of the network.

2.3.2. Content-driven Attention

Neural attention models are typically driven by query vectors.
A query vector is used to generate attention scores for all the



time-steps encoded by a RNN. These scores can be generated
by using dot product, cosine distance or by a small neural net-
work. The main difference between this model and the self-
attention model is how scores are calculated for each hidden
state. Equation 2. gets augmented with an additional query vec-
tor q. Equations 3. and 4. remain the same.

ei = a(hi, q) Q)
In a sequence-to-sequence model, a new query vector is pro-
duced at every time-step of the decoder. In our proposed model,
the query vector remains fixed, and is represented by the non-
linearly transformed i-vector. Instead of a neural network, we
use a cosine kernel to compute attention scores. Consequently,
we need to insure that the transformed i-vector has the same size
the hidden state of the RNN.

We note that this model is the only one that combines the RNN
hidden states and the i-vector within the embedding module
(dashed line in figure 1). Intuitively, the model is encouraging
the hidden states of the RNN to be similar to the corresponding
i-vector.

2.4. Loss Function

Neural networks can be used to learn discriminative speaker
embeddings by adopting one of two training strategies. The
simplest approach is to minimize the cross-entropy loss over
speakers in the training set. A criticism of this method is that the
network cross-entropy does not match the task we are finally in-
terested in, i.e., verification. A second training strategy involves
minimizing a contrastive loss function [23]. These models have
been shown to improve performance over cross-entropy models
for verification tasks [24], however this difference is quite small
for speaker verification. Contrastive losses are also harder to
optimize, require more data and often require careful mining of
negative examples [24].

In this work we choose to train cross-entropy networks for the
purpose of extracting speaker embeddings. One of the reasons
that we are motivated to take this approach is due to the specific
nature of the dataset used in this work. The NIST-SRE training
data set contains a fairly large number of speakers, however, the
number of recordings per speaker is fairly small. On the other
hand, most of the recordings are quite long. The current state
of the art deep speaker embedding model on this dataset orig-
inally used a contrastive loss [25]. However, that initial work
used a proprietary dataset, and for NIST-SRE they trained cross-
entropy models [16].

3. Experiments and Results

All of our experiments were conducted on the NIST-SRE 2010
evaluation set. We used the NIST-SRE 2004-2008 data for train-
ing the neural speaker embeddings and the Joint Bayesian clas-
sifier. We compare our proposed deeply fused embeddings with
i-vectors in terms of speaker verification.

3.1. Feature Extraction

We extracted 40-dimensional log filterbank features from the
raw speech using a sliding window of 25ms and a hop size of
10ms. These features were used as input to the RNN. We also
extracted 600-dimensional i-vectors using a 2048 component,
full covariance Universal Background Model (UBM).
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3.2. Network Training

All RNN models are trained using 1 second segments of speech
corresponding to 100 log filterbank frames. We filtered the
training data and only retained speakers with 4 or more record-
ings. This leads to a training dataset consisting of 4032 speak-
ers. We use 10% of the training data as a validation set for early
stopping. Gradient computation is performed using backpropa-
gation through time (BPTT) and weight updates are done using
the Adam optimizer [26].

3.3. Extracting Speaker Embeddings

Once the network is trained, it can be used as a feature extrac-
tor to obtain speaker embeddings. We discard the output layer,
and use the concatenated outputs of the embeddings module and
MLP as our speaker embeddings. We extract embeddings from
non-overlapping one second chucks of a recording and average
them to obtain an utterance level speaker embedding.

3.4. Comparison of Fusion Techniques

In this experiment we compare the speaker verification perfor-
mance of the different embeddings described in section 3. We
also trained a model by simply concatenating the i-vector to
each filterbank frame and fed it to the RNN. This approach is
similar to how speaker adaptation is done in speech recognition
[14] and is a early fusion method.

For this experiment we considered only the female part of the
NIST-SRE 2010 evaluation data. Scoring for speaker verifica-
tion was performed using cosine distance. We kept the number
of RNN hidden units the same for all the models, in order to
keep the comparison as fair as possible. Speaker embeddings
were extracted from all the model using the procedure detailed
in section 3.3.

Table 1: Comparison of different fusion approaches.

Model EER (%)
Early Fusion 15.69
Last Step 13.21
Self-Attention 5.61
IV-Attention 3.77

From table 1. we see that the early fusion approach (simple fea-
ture concatenation) produces the worst result. The results also
suggests that fusing i-vectors with neural speaker after layers
of non-linear processing is beneficial. Among the late fusion
models, we see that the models employing attention perform
significantly better than last-step model. This result is some-
what expected, given that the attention based models make use
of all the RNN hidden states as opposed to only the last one.
The best performance was shown by the content-driven atten-
tion model, with an EER of 3.77%. Notably, this is the only
model wherein the i-vector has a direct influence on the RNN
through the attention model.

3.5. Tuning Network Depth and Width

In the previous experiment we used a bidirectional RNN with
200 hidden units, and a MLP with 400 hidden units. The fused
speaker embeddings are 800-dimensional, comprising of the
concatenated forward and backward RNN hidden states and the
MLP output. We maintain this symmetry between the outputs



of the RNN and MLP in all models. Having established our best
performing model, we experimented with the deeper and wider
networks using this configuration.

Table 2: Comparison of different network architectures

Model Units Layers EER (%)
BiLSTM 200 1 3.77
BiLSTM 200 2 3.83
BiLSTM 512 1 3.34
BiLSTM 512 2 3.40

From Table 2. we see that making the network deeper leads
to a slight degradation in verification performance. On the
other hand, making the network wider (increasing from 200 to
512 hidden units) does lead to a significant improvement from
3.77% to 3.34% EER. We did not see any further improvement
by making the network even wider, or by stacking RNN layers.
We make used of speaker embeddings derived from this model
for the remainder of our experiments.

3.6. Joint Bayesian Classifier

In our previous experiments we scored speaker verification tri-
als using a simple cosine distance classifier. In this section we
experiment with a powerful Joint Bayesian (JB) classifier [27],
which has recently been shown to perform slightly better than a
probabilistic linear discriminant analysis (PLDA) [28]. An ad-
vantage of the JB model compared to PLDA is that there is no
need to determine the subspace dimension, and the algorithm
was shown to converge faster than PLDA in [27]

Table 3. compares PLDA and the JB model using i-vectors.
We see that the verification performance of the two classifiers is
comparable.

Table 3: Speaker Verification using Joint Bayesian model

Embedding Classifier EER(%)
i-vector PLDA 2.68
i-vector JB 2.64

The deeply fused embeddings used in this experiment are de-
rived using a 512-dimensional bidirectional LSTM and a 1024-
dimensional MLP for processing i-vectors. The resulting fused
embedding is 2048-dimensional. In order to use these embed-
dings with the joint Bayesian classifier we use principal compo-
nent analysis to reduce the dimensionality of the embeddings to
600. For these experiments we report verification performance
on both male and female parts of the NIST-SRE 2010 evaluation
data.

Table 4: This is an example of a table

Embedding Classifier Female Male Pooled
i-vector JB 2.64 2.23 2.41
Fused cosine 3.34 3.00 3.17
Fused JB 245 2.11 2.22

Table. 4 compares the speaker verification performance of i-
vectors and our proposed deeply fused embeddings using the
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Joint Bayesian model. We see that the fused embeddings im-
prove over the performance of i-vectors yielding a EER of 2.22
compared to 2.41. The fused embeddings also perform quite
well using simple cosine distance, showing performance that it
competitive with i-vectors/JB.

4. Analysis

The deeply fused speaker embeddings proposed in this work
have several useful characteristics. We believe that the results
using cosine distance point to the robustness of the embeddings,
as it implies that much of the channel effects have been re-
moved. In order gain a deeper understanding of the fused em-
beddings we perform an experiment wherein we score the indi-
vidual parts of the fused embedding separately. This is possible
as our fused embeddings concatenate the outputs of the embed-
ding module and the MLP.

Table 5: Comparison of components of Fused Embeddings. Re-
sults are reported on the Male part of SRE 2010 using cosine
distance for scoring.

Model EER (%)
Fused Embedding 3.00
RNN Embedding 3.00
MLP Embedding 45.17

Table 5. compares the performance of the different components
of our fused embeddings. Interestingly, we see that the speaker
embedding derived from the RNN yields the same performance
as the fused embedding. On the other hand, the MLP part per-
forms badly with a EER of 45.17%. While the i-vector plays
an important role in shaping the RNN embeddings through the
attention model, it appears that in order to do so it becomes less
discriminative towards speakers.

5. Conclusions

In this work we proposed deeply fused speaker embeddings that
fuse i-vectors with RNN based neural speaker embeddings. We
compared different strategies for fusion and found that different
methods lead to significantly different verification performance.
Our best embeddings use non-linearly transformed i-vectors to
drive a content-based attention model, which in turn shapes the
RNN embedding. This model achieves a EER of 3.17% with
cosine distance, compared to 2.41% achieved by combining i-
vectors with a JB classifier. When we use the JB model with the
fused embeddings we achieve a 7.8 % relative improvement over
i-vectors, achieving an EER of 2.22%. From our analysis of the
fused embeddings, we make a surprising finding in that most
of the discriminative power is retained in the RNN component
of the embedding, while the MLP part performs poorly. While
this is the case, the MLP part of the embedding still plays a cru-
cial role in shaping the RNN embeddings and remains a crucial
component of our model.

Given the good performance of this model with cosine distance,
in the future we will explore training our fused embeddings us-
ing a contrastive loss function that better matches this scoring
criteria. We are also interested in exploring domain adaptation
strategies so as to adapt our embeddings to new languages.
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