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Abstract

Voice-based speaker authentication or Automatic Speaker Ver-
ification (ASV) system is now becoming practical reality af-
ter several decades of research. However, still this technology
is very much susceptible to various spoofing attacks. Among
various spoofing attacks, replay is the most challenging attack.
In this paper, we propose a novel feature set based on our re-
cently introduced Variable length Energy Separation Algorithm
(VESA) during INTERSPEECH 2017. The key idea of this
paper is to capture the Instantaneous Amplitude (IA) obtained
from the instantaneous energy fluctuations. The replay speech
is affected by acoustic environment and distortions of interme-
diate device. Thus, the noise added in replayed speech is im-
portant to detect. The Amplitude Modulations (AM) are more
susceptible to noise and multipath interferences that may re-
sult due to replay mechanism. The experiments are performed
on various dependency index (DI) and lower EER of 6.12 %
and 11.94 % is found on dev and eval set, respectively, of ASV
Spoof 2017 Challenge database. Furthermore, we compare our
results with CQCC, LFCC, MFCC, and VESA-IFCC feature
sets. The score-level fusion VESA-IFCC and proposed feature
set further reduced the EER to 0.19 % and 7.11 % on dev and
eval set, respectively.
Index Terms: Automatic Speaker Verification, Spoofing, En-
ergy Separation Algorithm, Instantaneous Amplitude.

1. Introduction
Voice of a speaker is one of the key attribute that can be used in
the voice biometric or Automatic Speaker Verification (ASV)
system that can be used for security purpose such as banking
transactions, secure personalized data, etc. However, one of
the major threat to the ASV system is that they are vulnera-
ble to various kinds of spoofing attacks, namely, speech synthe-
sis [1], voice conversion [2], replay [3], twins and imperson-
ation [4]. The large availability and the widespread usage of the
mobile/smart gadgets, recording devices, it is easy and simple
to record the speaker’s voice, without having the prior informa-
tion which makes the replay spoof attacks simple to produce
and execute. The challenging task, in replay attack is to de-
tect acoustical characteristics of replayed speech, as there is a
imperceptible difference of the speech signal between the nat-
ural and the replayed speech. The speech signal recorded with
the playback device contains the convolutional and additive dis-
tortions from the intermediate devices [5]. It is therefore very
important to develop countermeasures that can detect spoofing
attacks.

In the recent years, several countermeasures were proposed
targeting either text-dependent or text-independent ASV sys-
tems [6]. In addition, countermeasures for replay attacks on

text-independent ASV systems were evaluated on AV spoof
dataset [7, 8]. The 2nd ASV Spoof 2017 Challenge focused
on text-dependent replay attacks [9]. The organizers have used
RedDots corpus and its replayed version to generate the re-
play attacks under different playback, recording and environ-
mental conditions [10, 11]. A baseline system is provided by
the organizers of the Challenge, the system uses Constant-Q
Cepstral Coefficients (CQCC) with a Gaussian Mixture Model
(GMM) as a classifier [9, 12]. The performance of the base-
line system is not good enough to be used as a countermea-
sure in the ASV system and hence, there was a need to develop
the standalone countermeasure. Several countermeasures were
approached during ASV Spoof 2017 Challenge. The different
acoustic features were studied in [13] and found Subband Spec-
tral Centroid Magnitude Coefficients (SCMCs) followed by fea-
ture normalization performed better for replay detection. The
Instantaneous Frequency (IF)-based feature sets were explored
in [14,15]. The study in [16] used high resolution temporal fea-
tures known as Single Frequency Filter (SFF). For replay detec-
tion, high frequency region is found to be more useful [17, 18].
Few approaches used deep learning along with feature normal-
ization [19–21].

Replay detection task is to identify the recorded speech sig-
nal from a live speaker or an intermediate (recording + play-
back) device. Because of convolutional distortion introduced
by the intermediate device, the replay speech contains lower
damping compared to the live speech signal [5]. In replay de-
tection, the feature extraction is the important part that identifies
the characteristics of the intermediate device.

In our earlier study, we used VESA along with estimating
the Instantaneous Frequency (IF) [14]. In this paper, we ex-
tended our earlier work by exploiting the Instantaneous Ampli-
tude (IA) information and replaced the Butterworth filterbank
with linearly-scaled Gabor filterbank. The IA obtained from
the Amplitude Modulation (AM) component of a speech signal
is severely affected by the noise and multipath interference be-
cause of presence of the replay mechanism. The novelty of this
paper lies in exploiting this degradation in AM component as a
signature of replayed speech than its natural counterpart.

2. AM-FM Demodulation
The Teager Energy Operator (TEO) is a nonlinear operator that
tracks the instantaneous energy of a signal [22]. The Energy
Separation Algorithm (ESA) is a demodulation technique used
along with TEO [23], [24]. The demodulation techniques is
even used in the auditory cortex [25]. The amplitude and fre-
quency components of a signal can be obtained after ESA al-
gorithm. The TEO for a discrete signal {Ψd} is defined as
the squared product of amplitude and frequency and is given
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by [23]:

Ψd{x(n)} = x2(n)− x(n− 1)x(n+ 1) ≈ A2Ω2, (1)

The TEO of a speech signal, x[n] = a[n]cos(φ[n]) is applied
to obtain AM-FM component and it can approximately estimate
the squared product of Instantaneous Amplitude (IA) (ai[n])
and Instantaneous Frequency (IF) (Ωi[n]) of signals. The TEO
for the ith subband speech signal is defined as:

Ψd

(
ai[n]cos

(∫ n

0

Ωi[m]dm+ θ

))
≈ a2i [n]Ω2

i [n]. (2)

The TEO operates with 3 samples for a given instant of
time, i.e., it uses present, past and future sample values. The
generalized TEO was by replacing 1 with a constant arbitrary
integer j, i.e., varying the samples of the past and future sig-
nal, i.e., x(n − j) and x(n + j), instead of only two adjacent
samples [26, 27]. This constant arbitrary integer is called as lag
parameter [28]. This lag parameter can be varied having value
greater than 1 and thus, we define the generalized TEO as Vari-
able Length version of TEO, i.e., VTEO and is given by [29]:

ΨDI{x(n)} = x2(n)− x(n− j)x(n+ j) ≈ j2A2Ω2, (3)

The advantage of VTEO over TEO lies in the superior lo-
calization and tracking instantaneous fluctuations (if any) of the
energy at a given instant of time and also it brings out the hid-
den dependencies and dynamics of the signal w.r.t. distantly
located speech samples than only immediate adjacent samples.
The VTEO have a good measure of the energy when the sam-
pling rate is greater than 8i times the frequency of the oscil-
lation of signal [29]. This instantaneous energy can be de-
composed using Variable length Energy Separation Algorithm
(VESA) and obtain the Instantaneous Amplitude and Instanta-
neous Frequency (IA-IF) of a speech signal. The IA and IF of a
VTEO signal is given by [23]:

ai[n] ≈ 2ΨDI{x[n]}√
ΨDI{x[n+ 1]− x[n− 1]}

, (4)

Ωi[n] ≈ arcsin
√

ΨDI{x[n+ 1]− x[n− 1]}
4ΨDI{x[n]} . (5)

3. Proposed Feature Extraction
The block diagram of AM-based feature extraction using ESA
of a VTEO signal is shown in Figure 1. Here, the input speech
signal is passed through a pre-emphasis filter to emphasize the
higher frequency regions [30]. The TEO works on a mono-
component speech signal and as speech signal is a multicom-
ponent signal, we need to pass the signal through a bandpass
filter to obtain a subband filtered signals at various cut-off fre-
quencies. Here, we have used a linearly-scaled Gabor filterbank
to obtain the subband filtered signals. The AM-FM modulation
features corresponding to the ith subband filtered signal are ex-
tracted from instantaneous frequency fi(t) and amplitude enve-
lope ai(t), where i=1,2,...., L, and L is the number of subband
filtered signals [31], i.e.,

ri(t) = ai(t)cos

(
2π

∫ t

0

fi(τ)dτ

)
, (6)

where ri(t) ≈ s(t) ∗ gi(t), s(t) is the speech signal and gi(t)
is the impulse response of the ith Gabor filter. We have used
Gabor filter g(t) as it is compact and smooth (i.e., g(t) ε C∞

which is function space of infinitely differentiable functions),
and hence, it has optimal joint time-frequency resolution (since
Fourier transform (FT) of Gaussian is Gaussian) [32]. The im-
pulse response of the Gabor filter is given by [22]:

g(t) = exp(−b2t2)cos(ωct), (7)

where ωc is the center frequency of the filter and b is a parame-
ter for controlling the bandwidth of a filter. The subband filtered
signal obtained from Gabor filter is then passed through demod-
ulation algorithm, i.e., VESA. We computed IA and IF for each
ith subband signals from the VESA algorithm, and further dis-
carded IF signal and focused on IA part. These IA’s were av-

Figure 1: Schematic block diagram of proposed VESA-IACC
feature set.

eraged over a short-time window of 20 ms with 10 ms shift
to obtain L-dimensional Instantaneous Amplitude Coefficients
(VESA-IAC) for each frame. The low-dimensional feature vec-
tors are obtained by applying Discrete Cosine Transform (DCT)
on VESA-IAC (to de-correlate the features while training the
models) and will be denoted as Instantaneous Amplitude Cosine
Coefficients, i.e., VESA-IACC. We have used Cepstral Mean
Normalization (CMN) as a post-processing technique, to over-
come the channel mismatch/distortion between the training and
testing feature vectors [33, 34].

Figure 2: Spectral energy densities of Panel I (natural) and
Panel II (replay) speech signal. (a) time-domain speech sig-
nal and (b) spectral energy density obtained from 40 linearly-
spaced Gabor filtered subband signal.

The spectral energy density obtained from 40 linearly-
scaled Gabor filterbank is shown for natural (Panel I) and re-
played (Panel II) speech signal as shown in Figure 2. The for-
mants and harmonics of the natural speech signal are clearly
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observed in Panel I of Figure 2(b). On the other hand, for re-
played signal, the formants and harmonics are blunted in the
lower frequency regions. While the high frequency regions have
relatively higher energy (indicated by rectangular box in Figure
2(b)) because of the distortion involved in replayed signal due
to the intermediate devices and various acoustical conditions.

4. Experimental Setup
We have used ASV Spoof 2017 Challenge version 1 database
that consists of replay spoof attacks with text-dependent system
[9]. The database is prepared from the RedDots corpus and
its replayed version [10, 11]. The detailed description of the
database is given in [9].

4.1. Feature Parameters

The proposed feature set, i.e., VESA-IACC are extracted from
40 linearly-scaled Gabor filterbank and further a window of 20
ms with a shift of 10 ms was used and averaged each frame
block. Finally, 40-Discrete Cosine Transform (DCT) static co-
efficients were appended to their first and second-order deriva-
tives resulting to the 120-dimensional (D) feature vector. Along
with VESA-IACC feature set, we have also used VESA-IFCC
feature set from our earlier study [14]. The VESA-IFCC fea-
ture set were extracted from 40 linearly-scaled Butterworth fil-
terbank with 40-DCT static coefficients resulting in total 120-D
feature vector. We have compared our results of proposed fea-
ture set with three standard feature sets in the spoofing detection
task, namely, CQCC, LFCC, and MFCC. The feature parame-
ters used for CQCC is 30-DCT static coefficients along with
∆ and ∆∆. For LFCC feature set we extracted 120-D feature
vector (40 static+∆+∆∆) and for MFCC, we used 39-D fea-
ture vector (13 static+∆+∆∆). The Gaussian Mixture Model
(GMM) is used as a classifier to classify the speech signal being
natural or replayed signal. The number of Gaussian components
used in GMM to train the models from the training dataset is
512. The decision of the final scores of speech signal being nat-
ural or replayed speech is decided by the Log-Likelihood Ratio
(LLR) and is given by:

LLR = log
P (X|H0)

P (X|H1)
, (8)

where P (X|H0), and P (X|H1) are the likelihood scores of
natural and replay trials. The score-level fusion of two feature
sets is given by:

LLKfused = αLLKfeature1 + (1− α)LLKfeature2, (9)

where LLKfeature1 is a log-likelihood score of CQCC, LFCC,
and MFCC, whereas LLKfeature2 proposed feature set. The
fusion parameter (α) lies between 0 < α < 1 to decide the
weight of scores.

5. Experimental Results
5.1. Results for Various Dependency Index (DI)

5.1.1. Results on Development Set

The results with varying the DI from 1 to 4 on development
(dev) set of the proposed feature set VESA-IACC are shown in
Table 1. The results of our recently proposed VESA-IFCC are
also shown Table 1 [14]. The VESA-IACC feature set obtained
an EER of 6.12 % with DI=1, whereas with VESA-IFCC the
EER is 6.61 % on DI=2. Since VESA-IACC and VESA-IFCC

capture distinct information of amplitude and frequency to ex-
plore possible complementary information captured by them,
their score-level fusion is done Thus, to explore this individual
information of both the feature sets, we have fused these fea-
tures for all the four DI’s. From Table 1, it can be observed
that after score-level fusion of VESA-IACC and VESA-IFCC
for each DI, the EER is reduced significantly than that for indi-
vidual feature sets indicating that these two feature sets indeed
capture complementary information individual feature sets. The
best lower EER was obtained with the fusion of features at DI=4
resulting in the reduced EER of 0.19 % from 7.18 % (VESA-
IACC) and 6.63 % (VESA-IFCC) feature set clearly demon-
strating the potential of idea of exploring DI in TEO [29].

Table 1: Results on Dev Dataset of Proposed Feature Set on
Various Dependency Index (DI)

DI VESA-IACC VESA-IFCC [14] Fusion
1 6.12 7.65 1.72
2 7.44 6.61 0.33
3 7.83 6.65 0.26
4 7.18 6.63 0.19

5.1.2. Results on Evaluation Set

Similarly, we computed our proposed features on evaluation
(eval) set as done on dev set. We varied the DI from 1 to 4
for both VESA-IACC and VESA-IFCC feature sets. The lower
EER was obtained on VESA-IACC is with DI=2 of 11.94 %,
while with VESA-IFCC feature set, we got 11.79 % with DI=4.
The best lower EER was obtained with the score-level fusion of
VESA-IACC and VESA-IFCC feature set reducing the EER to
7.11 % on DI=4 from the individual EER of 12.27 % (VESA-
IACC) and 11.79 % (VESA-IFCC) feature set.

Table 2: Results on Eval Dataset of Proposed Feature Set on
Various Dependency Index (DI)

DI VESA-IACC VESA-IFCC Fusion
1 12.08 16.16 9.11
2 11.94 13.46 7.56
3 12.09 12.34 7.15
4 12.27 11.79 7.11

5.2. Results of Score-Level Fusion

To explore the possible complementary information present in
other feature sets, namely, CQCC, LFCC, and MFCC, we have
used the scores of those features and fused them at score-
level with VESA-IACC and VESA-IFCC as shown in Table
3. The score-level fusion is performed for every DI on both
dev and eval datasets. The score-level fusion with CQCC in-
deed helped to reduce the EER for each DI. On dev set, the
lower EER of 3.99 % was obtained when fused with DI=1 in
VESA-IACC feature set, while with DI=4 the fusion of VESA-
IFCC and CQCC gave lower EER of 3.28 %. The next fu-
sion was done with LFCC feature set, the score-level fusion
of VESA-IACC and LFCC did not reduce the EER, whereas
the fusion with VESA-IFCC reduced the EER to 0.38 % with
DI=4. The VESA-IACC feature set was extracted with linear
scale and LFCC also uses the linear scale and hence, possibly
the score-level fusion did not reduce the EER as both are mag-
nitude spectrum-based features and thus, may not carry much
complementary information. For most of the DI’s, the lower
EER obtained was the same as that of the VESA-IACC feature
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(a) (b)

Figure 3: DET curves on dev and eval datasets. (a) the individual DET curve on dev set of CQCC, MFCC, LFCC, VESA-IACC (A),
VESA-IFCC (B) and score-level fusion A+B and (b) similar DET curves on eval set.

Table 3: Results on Score-Level Fusion of CQCC, LFCC, and MFCC with Various Dependency Index (DI) on Dev and Eval Dataset

Dependency Index (DI)
VESA-IACC VESA-IFCC

DI 1 2 3 4 1 2 3 4
CQCC 3.99 4.27 4.40 4.39 5.32 3.75 3.64 3.28

Dev LFCC 6.12 7.44 7.38 7.18 2.23 0.74 0.56 0.38
MFCC 4.06 4.36 4.39 4.31 3.21 1.42 2.26 1.58
CQCC 11.18 11.13 11.28 11.49 16.16 13.46 12.34 11.79

Eval LFCC 12.08 11.94 12.09 12.27 10.32 8.44 7.84 7.93
MFCC 12.08 11.94 12.09 12.27 16.16 13.46 12.34 11.79

set. On the other hand, the fusion of VESA-IFCC and LFCC
also uses linear scale, however, they carry the complementary
information of magnitude and phase spectrum because of which
it reduced the significantly. Finally, we fused our feature sets
with MFCC obtaining an EER of 4.06 % with VESA-IACC for
(DI=1) and 1.42 % for (DI=2) with VESA-IFCC features. Sim-
ilarly, the score-level fusion was performed on the eval dataset.
There was a reduction in the EER when fused with VESA-
IACC (for DI=1) and CQCC resulting in 11.13 %, whereas the
fusion of VESA-IACC (for DI=2) with LFCC and MFCC ob-
tained reduced EER of 11.94 % as shown in Table 3. On the
other hand, the score-level fusion of VESA-IFCC with CQCC
and MFCC did not reduce the EER for all the DI’s. While the
score-level fusion of VESA-IFCC (with DI=4) and LFCC re-
duce the EER from the individual system to 7.93 %. Table 4
shows the final results of our proposed feature set. The orga-
nizers of ASV Spoof 2017 Challenge provided CQCC feature
set with GMM classifier as the baseline system. In this paper,
we have considered CQCC and LFCC as two distinct baselines
systems. The proposed feature set was extracted with linearly-
spaced Gabor filterbank and thus, to compare our proposed re-
sults with a linearly-scaled feature set, we consider LFCC as the
second baseline. At last, we used one of the well known MFCC
feature set to compare our results. The EER of all the feature
sets, namely, CQCC, LFCC, and MFCC are high on both dev
and eval dataset. The EER for CQCC (baseline system) gave
an EER of 10.21 % and 28.48 % on dev and eval set, respec-
tively. The VESA-IACC and VESA-IFCC feature sets individ-
ually performed better than the CQCC, LFCC, and MFCC fea-
ture sets. The best results obtained with the score-level fusion
of VESA-IACC and VESA-IFCC resulting in the lower EER of
0.19 % on dev set and 7.11 % on eval set.

The performance is also shown by the DET curve in Fig-

Table 4: Final Results on Dev and Eval Dataset

Feature Set Dev Eval
CQCC (Baseline) 10.21 28.48

LFCC 10.58 16.62
MFCC 11.21 31.30

A:VESA-IACC 6.12 11.94
B:VESA-IFCC 6.61 11.79

A+B 0.19 7.11
+: score-level fusion

ure 3(a) for dev set and Figure 3(b) for eval set for CQCC,
MFCC, LFCC, VESA-IACC and VESA-IFCC feature set along
with score-level fusion of VESA-IACC and VESA-IFCC. On
dev and eval set, score-level fusion of VESA-IACC and VESA-
IFCC are clearly distinct at all the operating points of the DET
curve and have a significantly lower false alarm and miss prob-
abilities in the DET curve compared to the CQCC, LFCC, and
MFCC feature set.

6. Summary and Conclusions
In this study, we investigate the advantage of VESA over ESA
with varying the DI to capture the hidden dependencies and dy-
namics for replay SSD task. The VESA algorithm has the su-
perior localization and tracking instantaneous energy properties
that makes to estimate accurately the IA and IF signals. We
found that the estimated VESA-IACC and VESA-IFCC feature
sets perform better than the baseline systems. The reduced EER
clearly demonstrates the potential idea of exploring DI in ESA.
Furthermore, the score-level fusion of both VESA-IACC and
VESA-IFCC component captures the possible significant com-
plementary information of each other and reduced the EER fur-
ther than the individual systems. In future, we plan to explore
the effect of different filterbanks and investigate the character-
istics of the intermediate device.
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