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Abstract
Learning a good speaker embedding is critical for many speech
processing tasks, including recognition, verification, and di-
arization. To this end, we propose a complementary optimiz-
ing goal called intra-class loss to improve deep speaker embed-
dings learned with triplet loss. This loss function is formulated
as a soft constraint on the averaged pair-wise distance between
samples from the same class. Its goal is to prevent the scat-
tering of these samples within the embedding space to increase
the intra-class compactness.When intra-class loss is jointly op-
timized with triplet loss, we can observe 2 major improvements:
the deep embedding network can achieve a more robust and dis-
criminative representation and the training process is more sta-
ble with a faster convergence rate. We conduct experiments on
2 large public benchmarking datasets for speaker verification,
VoxCeleb and VoxForge. The results show that intra-class loss
helps accelerating the convergence of deep network training and
significantly improves the overall performance of the resulted
embeddings.
Index Terms: speaker verification, deep neural networks, em-
bedding learning, triplet loss

1. Introduction
Learning speaker representations that can enable comparing
speech utterances directly is a crucial for multiple speaker re-
lated tasks in speech processing, including diarization, recog-
nition, and verification. Recently, deep learning systems have
achieved better benchmarking results than i-vectors in these
speaker related tasks [1, 2, 3, 4, 5]. In these systems, a
speaker embedding can be learned in two main ways. First,
it can be extracted as the derivatives of the speaker recogni-
tion task by using the activation of the last layer before clas-
sification [4, 6, 7]. Second, it can be learned directly by op-
timizing the loss functions constraining the distances between
same-speaker and different-speaker utterance pairs [3, 8, 9].
Among the distance-based losses, triplet loss has become more
and more widely used in deep embedding networks [2, 3, 8].

The main idea of triplet loss is that for the distance be-
tween a given pair of same-speaker utterances should be smaller
than the distance from each of these utterances to any different-
speaker utterance by a constant margin [10]. While this idea
is attractive, learning with triplet loss can result in suboptimal
performance in practice, especially in text-independent verifi-
cation. The label information is not explicitly used in this loss
function. Therefore, the model has to figure out the identity
related factors that differentiate a utterance pairs besides the
variation in content, accents, etc. This wide range of varia-
tion can lead to a dispersion of intra-class samples, thus ren-
dering the embedding sensitive to noise. Furthermore, the num-

ber of triplets increases exponentially with the number of sam-
ples, which makes it hard to extract meaningful triplets to learn.
Therefore learning with triplet loss can be slow to converge
and result in suboptimal performance. To overcome these chal-
lenges, one can employ effective sampling strategies [10, 11] or
training embedding networks on top of pretrained classification
models [5, 9].

In this paper, we address the problem of training embedding
networks with triplet loss by proposing a complementary loss
function called intra-class loss. This loss acts as a regularizer
that reduces the averaged intra-class distance variance of the fi-
nal embedded features. The effects of this loss is twofold. First,
by reducing intra-class distance variance, the embedded fea-
tures for each class are more compact and less sensitive to noise.
Second, by minimizing the variation in utterances due to con-
tent or recording condition, the model can subsequently focus
on differentiating utterances based on identities. Hence, using
intra-class loss can help stabilize training and result in perfor-
mance improvement. In practice, we optimize an equivalence
of intra-class distance variance, which is the averaged pair-wise
distance of same-speaker utterances. This upperbound can be
efficiently estimated without parametrized means as in [12] and
can be combined with triplet loss without expensive overhead
cost.

To validate our contribution, experiments are conducted
on two benchmark datasets for speaker verification: VoxCeleb
and VoxForge. In both datasets, our propose method improves
the overall accuracy and accelerates the training of embedding
learning with triplet loss. Our results are also competitive with
state-of-the-art systems. Our code and pretrained models will
be made available publicly.

2. Related Work
Below we discuss prior works on speaker embedding for recog-
nition and verification as well as related work in computer vi-
sion which share similarities with our proposed method.

Conventionally, speaker representations are based on i-
vectors [13]. To extract i-vectors, Baum-Welch statistics are
computed from a Gaussian Mixture Model-Universal Back-
ground Model (GMM-UBM), which is learned using a se-
quence of feature vectors. I-vectors then can be used to compare
utterances directly using cosine similarity or probabilistic linear
discriminant (PLDA) [14, 15, 16]. To improve upon i-vectors,
deep neural networks (DNNs) have been first applied to gradu-
ally replace each step in computing i-vectors traditional speaker
recognition systems [17, 18].

With the recent advances in deep learning, research effort
has been devoted to learn end-to-end DNNs for speaker classi-
fication and verification. One common task is to learn a good
speaker embedding to compare utterances, which can be ad-
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dressed by two main types of approaches: learning a represen-
tation as a byproduct of classification or directly learning an
embedding using distance based losses.

In the first approach, a DNN is trained to classify speakers
and the activations of the final hidden layer are averaged over
the utterance to create a ”d-vector” [6]. D-vectors can be en-
hanced by concatenating multiple levels of representation [4],
PLDA scoring [1], and data augmentation [7]. The speaker
embeddings extracted in this manner are not discriminatively
trained and therefore often require an classifier such as PLDA
or another DNN.

In the second approach, the scoring scheme is fixed as the
distance between embedded features, thus the DNNs are opti-
mized with distance-based loss to directly extract the embed-
dings. The distance-based loss can be contrastive loss [9] or
triplet loss [10]. Especially, triplet loss has shown improve-
ments in speaker turn detection [8], speaker diarization [19],
and text-independent verification [2, 3]. The main idea is that
the distance between same-speaker utterances should be smaller
than the distance between different-speaker utterances. The
challenge of this approach is the wide range of variation of
text-independent utterances. It is hard for a network to dis-
tinguish the speaker related factors from other factors, which
can lead to suboptimal results. Therefore, the network is of-
ten pretrained for classification task in advance to achieve good
performance [3, 9]. Pretraining with classification uses the ex-
plicit identity labels to the network into speaker discriminative
features, thus filtering other sources of variation.

In this paper, we are interested the problem of large vari-
ation in text-independent utterances. In deep face recognition,
increasing intra-class compactness has been shown to improve
the discrimination power of the activation features of the last
hidden layer [12]. We follow the same idea but in the embed-
ding space. Regularzing same-class neighbors has also been ap-
plied in [20]. In our work, instead of minimizing the distances
to means [12] or the empirical positive pair-wise distances [20],
we regularize the soft upperbound derived from the intra-class
variance, which is the averaged intra-class distance.

3. Proposed learning approach

In this section, we first present the general framework to learn
an embedding space with triplet loss and discuss its pros and
cons to motivate our new loss function, which is described sub-
sequently.

3.1. Embedding Learning with Triplet Loss

Given a labeled training set {(xi, yi)}, in which xi ∈ RD, yi ∈
{1, 2, ..,K}, embedding learning is a class of algorithms
which learn a function f which maps an instance x into
f(x) ∈ Rh, i.e. an element of a h-dimensional space. In
this new embedding space, we want the intra-class distances
d(f(xi), f(xj))/yi = yj to be minimized and the inter-class
distances d(f(xi), f(xj))/yi 6= yj to be maximized. To
achieve such embedding, one method is to learn the projection
that optimizes the triplet loss in the embedding space. A triplet
consists of 3 data points: an anchor point xa, a positive point xp,
and a negative point xn such that ya = yp and ya 6= yn. Fol-
lowing the embedding goal, we would like the 2 points (xa, xp)
to be close together and the 2 points (xa, xn) to be further away
by a margin α in the embedding space. Formally, we define the

triplet loss to be minimized as:

Lt =
1

|T |
∑

[d(f(xa), f(xp))− d(f(xa), f(xn)) + α]+

(1)
where T is the set of all possible triplets of the training set and
d is the Euclidean distance in the embedding space.

We can observe in Eq. 1 that the parameters of f are up-
dated based on the relative distance difference between the pos-
itive and negative pairs. Embedded features can be spread out to
achieve the margin, thus making the representation sensitive to
noise. On the other hand, two speech segments can be differen-
tiated by not only the speaker identities but also by the content
of speech, accents, etc. This large intra-class variation can make
triplet loss result in low accuracy, especially when trained from
scratch. Our intra-class loss is proposed in the next section to
address these problems.

3.2. Reducing intra-class variance in the embedding space

Let Sc = {(xi, yi)} be the set of samples from the class c. We
want to minimize the intra-class distance variance of c:

min
f

∑

xi/yi=c

d(f(xi), µc)
2

nc
(2)

in which nc = |Sc| and the mean of class c features is µc =∑
xi/yi=c

f(xi)
nc

. Eq. 2 requires estimating the mean µc, which
changes with each update. To address this problem, a possibil-
ity is to compute a moving average of µc, but this can be un-
reliable during early training stage and requires a hyperparam-
eter to tune. To circumvent this issue, we instead minimize an
upperbound of the variance, which uses the pair-wise squared
distances within the class. This upperbound can be derived as
follows:

∑

xi/yi=c

d(f(xi), µc)
2

nc
=

∑

xi/yi=c

||f(xi)−
∑

xj

f(xj)

nc
||22

nc

=
∑

xi

||∑xj
(f(xi)− f(xj))||22

n3
c

≤
∑

xi,xj

||f(xi)− f(xj)||22
n3
c

(3)

One can observe that minimizing Eq. 3 can lead to a triv-
ial solution when all samples are projected to a single point.
This can encourage model collapse when training with triplet
loss [10]. Hence, we optimize the squared root of Eq. 3 and
devise a second upperbound:

√√√√
∑

xi,xj

||f(xi)− f(xj)||22
n3
c

≤
∑

xi,xj

√
||f(xi)− f(xj)||22

nc
√
nc

=
∑

xi,xj/yi=yj=c

d(f(xi), f(xj))

nc
√
nc

(4)

In Eq. 4, the objective is based on the true distance in-
stead of the squared distance, which makes the loss more sta-
ble to model collapse [11]. Also, we propose a soft constraint
that only requires each pair-wise distance to be smaller than a
threshold β. In practice, because nc is constant across mini-
batches, we choose the denominator to be n2

c , thus formulating
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Figure 1: Illustration of triplet loss and intra-class loss.

the loss as the soft averaged pair-wise distance. Concretely, our
intra-class loss function becomes:

Lc(c) =
∑

xi,xj/yi=yj=c

[d(f(xi), f(xj))− β]+
n2
c

(5)

This new intra-class loss can be weighted by λ to be com-
bined with the triplet loss in Eq. 1 (as illutrasted in Fig. 1) to
form the final loss function:

L = Lt +
λ

K

∑

c

Lc(c) (6)

Using this intra-class loss as a regularizer has 2 main ef-
fects. Firstly, it prevents features to disperse in the embed-
ding space, thus making the representation more robust to noise.
Secondly, minimizing variance can reduce the influence of other
factors such as speech content or record condition. Therefore,
the learned model is more discriminative with respect to speaker
identities. We also note that the distances calculated in intra-
class loss can be effectively reused from triplet loss, thus reduc-
ing the overhead of adding a new loss function.

4. Experiments
We first describe the datasets and implementation details before
discussing the experiments and the results. Our codes and mod-
els will be publicly available.

4.1. Data and metrics

VoxCeleb. This dataset contains videos of celebrities collected
from Youtube [9]. There are more than 140K utterances of 1251
speakers in a free context. 40 speakers are reserved as test data
for the verification protocol. We report Equal Error Rate (EER)
computed using the provided trial pairs.
VoxForge. This is an open source speech database, where
speakers voluntarily contribute speech data for development of
open resource speech recognition systems 1. The utterances
have lower variability as the text is read and the data is col-
lected in a clean environment. We follow the same protocol as
in [5]. From 300 chosen speakers, three subsets of 100 speakers
are constructed for training, development, and evaluation. The
training set is used to train / finetune embedding networks. The
development set is used to choose a threshold based on EER,
and the threshold is applied on the evaluation set to report Half
Total Error Rate (HTER).

4.2. Implementation Details

CNN architecture. Our model is built using the ResNet

1http://www.voxforge.org/

Table 1: ResNet architecture used in the experiments. Resid-
ual block follows the same definition in [21]. Each convolution
layer is followed by ReLU and batch normalization.

Layer # filt. Stride
Conv 5× 5 64 2× 2

Max Pool 3× 1 - 2× 1
Res. block 64 2× 2
Res. block 128 2× 2
Res. block 256 2× 2
Conv 1× 9 256 1× 1
Conv 1× 9 512 1× 1

Stats Pool n× 1 - 1× 1
L2 norm - -

architecture[21]. There are 31 layers configured as in Tab. 1.
The key modification is the statistical pooling layer, which con-
catenates both mean and standard deviation of the previous
layer across the whole sequence in time. We also change the
configuration of the first max pooling layer to work only on the
time domain.
Feature extraction. For each utterance, a spectrogram is com-
puted using 512-point FFT, a temporal window of 25ms, and
a window shift of 10ms. Mean and variance normalization on
each frequency bin is performed as in [9].
Training details. All networks are trained using RMSProp op-
timizer [22] with a 10−3 learning rate. Each minibatch contains
120 samples, and negative triplets are sampled using distance-
based sampling method [11]. We train with truncated utterances
of 2 seconds or 3 seconds as input. For hyperparameters, we
choose α = 0.2, β = 0.2, and λ = 0.001.

4.3. Experimental Results

Training from scratch. In this setting, a ResNet is initialized
randomly and then learned on the VoxCeleb training set using
either triplet loss alone or in combination with intra-class loss.

In Fig. 2, we visualize the EER on the VoxCeleb valida-
tion set as the model training progress. One can observe that
intra-loss accelerates the training speed. The model not only
converges faster but also to a lower EER. In Tab. 2, EERs on the
validation and test sets with different utterance input lengths are
shown. Intra-class loss substantially improves the overall per-
formance of the deep model. The EER is reduced relatively by
14% for 2s-segment input and 7% for 3s-segment input. Over-
all, 2s-segment input yields worse EER in comparison to us-
ing 3s. However, it is important to note that when intra-loss is
added, the model learned with 2s-segment input can still reach
the same performance as in using 3s-segment. This shows intra-
class loss can enhance the embedding space even when the input
signals contain less information.
Embedding learning from a pretrained model. In this ex-
periment, a ResNet for speaker recognition is first trained with
softmax loss using the speakers in the VoxCeleb training set.
Then the convolutional weights are frozen and the last embed-
ding layer is trained with the embedding losses.

When using the activation of the last hidden layer of the
pretrained models, one can achieve 14.43% and 11.96% EER
on the test set using input of 2s or 3s respectively. As the
models were pretrained to predict explicitly the identities, they
can focus more on the discriminative features for classification.
Therefore, training an embedding layer on top of these models
can significantly enhance the results. As the initial model is al-
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a)

b)
Figure 2: EER on the validation set of VoxCeleb during training
with training samples of different lengths: (a) 2s or (b) 3s.

Table 2: Ablation study of how using intra-class loss effect the
EER on the validation and test set of VoxCeleb. We also com-
pare how results differ when the training utterances are trun-
cated to 2s or 3s.

Setting In. len. Loss Val. EER Test EER

Scratch
2s Trip. 12.73 12.44

Trip. + Intra. 11.71 10.74

3s Trip. 11.17 10.68
Trip. + Intra. 10.31 9.93

Pretrained
2s Softmax - 14.43

Trip. 7.21 8.31
Trip. + Intra. 6.30 7.97

3s Softmax - 11.96
Trip. 6.84 8.20

Trip. + Intra. 6.03 8.12

ready well-trained, both cases of with and without intra-class
loss yield statistically similar EERs.

In Tab. 3, we compare our method with state-of-the-art sys-
tems. Our embedding network with intra-class loss outper-
forms traditional methods using factor analysis with GMM-
UBM. When comparing with other embedding methods, one
can see that bidirectional LSTM trained with triplet loss [8] can-
not capture the discriminative variation of the data well. Mean-
while, our systems perform on par with [9], which uses pre-
trained classification model and contrastive loss for embedding
learning. This agrees with the conclusion from [11] that shows
similar performance between contrastive loss and triplet loss.
Verification on VoxForge. In this experiment, we use the pre-
trained classification network from VoxCeleb and the embed-
ding layer is learned using either the VoxCeleb or the VoxForge
training sets and report test results on the VoxForge evaluation
set. In evaluation stage, all distances from a probe utterance to
every enrollment utterance is computed and the identity is sim-
ply decided based on a threshold. The development set is used

Table 3: Comparison of our embedding method to other state-
of-the-arts on VoxCeleb dataset. (∗are reported in [9])

GMM-UBM∗ 15.0
i-vector + PLDA∗ 8.8

Bi-LSTM Embedding [8] 14.1
CNN Embedding [9] 7.8

Ours (Pretrained + Intra.) 7.97

Table 4: Comparison of our embedding method to other state-
of-the-arts on VoxForge dataset. (∗are reported in [5])

VoxCeleb Triplet loss 2.09
Triplet + Intra-class loss 1.50

VoxForge Triplet loss 1.69
Triplet + Intra-class loss 1.16

GMM-UBM∗ 3.05
i-vector + PLDA∗ 5.87

ISV∗ 2.40
CNN Clas. [5] 1.20

to set the threshold with lowest EER. HTER is reported on the
evaluation set using this threshold.

Tab. 4 shows our ablation results together with other meth-
ods. Comparing our models when using intra-class loss against
using triplet loss only, we can observe a significant relative re-
duction of 30% in EER in both cases of training sets. Inter-
estingly, the model trained with intra-class loss on out-domain
data (VoxCeleb) can still perform better than the model trained
with only triplet loss on in-domain data (VoxForge). The im-
provement shows that intra-class loss can help adapting models
to new datasets. This can be explained as the variance of each
class is regularized, the learned embedded features are less sen-
sitive to noises which are not presented in the original dataset.

When comparing to other methods on this dataset, our deep
embedding models are better than traditional factor analysis
systems. Using intra-class loss, our model can work slightly
better than the deep method that uses classification CNNs to
model specific speakers [5]. It is important to note that in our
system, we do not build a specific model for each speaker using
their enrollment data. Only the distances from a probe utterance
to all enrollment data are used to verify directly. This advantage
allows our system to be used when there is no enrollment phase,
for example in the setting of speaker verification in the wild.

5. Conclusion
We have presented a novel loss function as an supportive learn-
ing goal to improve the speaker embedding spaces learned by
deep neural networks. By reducing the averaged intra-class
pair-wise distances, our loss aims to increase the robustness of
learned features. The results of speaker verification task on two
public datasets, VoxCeleb and VoxForge, validate the improve-
ment of our approach. Models learned with intra-class loss not
only converge faster but also achieve better accuracy. In the fu-
ture, we plan to conduct more experiments different strategies
for reducing intra-class variance such as using moving averaged
class means [12] or using embedding margin based loss [11].
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