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Abstract
Analyzing EEG signals recorded while participants are listen-
ing to continuous speech with the purpose of testing linguistic
hypotheses is complicated by the fact that the signals simulta-
neously reflect exogenous acoustic excitation and endogenous
linguistic processing. This makes it difficult to trace subtle dif-
ferences that occur in mid-sentence position. We apply an anal-
ysis based on multivariate temporal response functions to un-
cover subtle mid-sentence effects. This approach is based on
a per-stimulus estimate of the response of the neural system to
speech input. Analyzing EEG signals predicted on the basis
of the response functions might then bring to light condition-
specific differences in the filtered signals. We validate this ap-
proach by means of an analysis of EEG signals recorded with
isolated word stimuli. Then, we apply the validated method to
the analysis of the responses to the same words in the middle of
meaningful sentences.
Index Terms: ERP analyses, speech comprehension, reduced
speech

1. Introduction
In psycholinguistics, event-related potentials (ERPs) are con-
sidered to be related to cognitive activities during the process-
ing of spoken or written stimuli. For instance, the amplitude of
the N400 ERP component is assumed to be inversely related to
the cognitive effort required to semantically process the word to
which the EEG is time-locked [1]. However, ERP signals not
only reflect the brain activity related to semantic processing, but
also multiple other activities, some of which may be related to
other features of the stimuli (such as precontextual effects). A
case in point is semantic processing of words embedded in con-
tinuous speech. It is highly unlikely that all confounding effects
can be removed by conventional straightforward averaging over
multiple tokens.

EEG signals are the response of an extremely complex –
and probably non-linear– system to several simultaneous input
signals, together with ongoing internal processes. Therefore,
invoking knowledge from system identification theory should
help in analyzing and understanding EEG signals, and the ERP
responses derived from those signals. This idea was pioneered
for studying responses of single cells as early as the nineteen
eighties [2], and later adapted for non-intrusive investigation of
whole-brain systems by [3, 4, 5] in Ireland and by [6, 7, 8] in
the USA. By matching the physical characteristics of the stimuli
with the features of the corresponding EEG signals it is possi-
ble to infer the system characteristics of a neural system. These
characteristics are known as the Spectro-Temporal Receptive
Field or Spectro-Temporal Response Function (STRF) or, in the
parlance of the Irish group, the multivariate temporal response
functions (mTRF). Recently, the two groups joined forces in an
attempt to better understand the cocktail-party effect [9]. In this

paper we investigate whether the STRFs can be used to separate
concurrent neural activities from the same EEG signal, caused
by auditory input that unfolds at the same time as the semantic
processing takes place. The long-term goal of this research is to
develop methods that will allow to conduct research on speech
comprehension with stimuli that are much closer to everyday
speech than the strictly controlled stimuli that are now being
used in laboratory experiments. Because the mTRF software [5]
is easier to access and use than the STRFpak and STRFlab
packages designed by the group in the USA,1 all processing was
done using the mTRF software.

To understand the ways in which using the STRF concept
can help to separate concurrent neural activities, we will first
apply mTRF processing to EEG recordings of an experiment in
which participants listened passively to multi-syllabic isolated
words with a /@/ in the first syllable that could be either reduced
or full. Then, we will investigate EEG signals corresponding
to the same words embedded in the middle of carrier sentences.
We will combine mTRF processing with advanced statistical
modeling using Generalized Additive Models (GAM), which
are able to account for stimulus-related and participant-related
variance [10, 11, 12].

2. Description of the data
The EEG data used for this paper was taken from [13, 14]. In
three passive listening experiments, right-handed native listen-
ers of Dutch were instructed to listen attentively to the pre-
sented speech input and were told that they would get questions
about the words and sentences they were about to hear. The tar-
get words were full and reduced pronunciations of verb forms.
The goal of the experiments was to test whether, and in which
linguistic contexts, full forms have an advantage over reduced
forms. That advantage was expected to show up in differences
between two ERP components, an N100/P200 related to acous-
tic processing and an N400 related to semantic integration.

The full and reduced forms were presented in three listening
contexts: the words presented in isolation, the words in mid-
sentence and the words in sentence-final position. Participants
took part in only one of the three experiments. Similar to [10],
in this paper we only analyze full and reduced forms in isolation
and in mid-sentence position.

2.1. Stimulus materials

The target stimuli were 80 Dutch verb forms starting with the
unstressed prefixes be- (/b@/, e.g., bevallen /b@vAl@/, to give
birth), ge(/x@/, e.g., genieten /x@ni:t@/, to enjoy), or ver- (/v@r/,
e.g., vertellen /v@rtEl@/, to tell). When pronounced in their full
forms, these prefixes contain a clear @. Only verb forms whose
second syllable starts with a consonant were selected. Out of
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the 80 verb forms, 31 had ver-, 31 be- and 18 had ge-. In addi-
tion, 120 filler verb forms were used that do not start with one
of the three prefixes. In mid-sentence position, the verb forms
served different syntactic functions to ensure that the results do
not depend on a specific syntactic construction. The target verb
form was always preceded by four syllables. Sentence accent
was never on the target verb form or the preceding syllables.
The semantic context up until the target verb form was kept as
neutral as possible.

Sentences were recorded by a male native speaker of Dutch
three times: Once without specific instructions, once with the
instruction to pronounce all verb forms in full, and once with
the instruction to pronounce the verb forms without the prefixal
/@/. For the filler sentences, there was no specific instruction.
The reduced and unreduced verb forms were spliced out of their
original sentences and were pasted into the carrier sentence or
presented in isolation (these were segmented from the sentences
in which these targets occurred at sentence-final position; see
[13, 14] for more details). This was done to make sure that the
reduced and unreduced sentences only differed with respect to
the realization of the target verb form. The spliced, reduced and
full verb forms had a mean /@/ duration of 3 ms and 42 ms in
mid-sentence, and of 0 ms and 43 ms in isolation, respectively.
The mean duration of the words was 430 ms for the reduced
forms and 495 ms for the full forms in mid-sentence position,
and 739 ms and 782 ms in isolation, respectively.

2.2. EEG recordings

The EEG signals were recorded with 26 active electrodes
mounted in an elastic cap (Acticap), two electrodes on the mas-
toids and four electrodes (two horizontally and two vertically
placed) to capture the electro-oculogram (EOG). See [13, 14]
for more details on the electrode montage. Each electrode was
referenced online to the left mastoid. Electrode impedance was
kept below 5 kΩ. The EEG and EOG signals were amplified
(pass band: 0.02 - 100 Hz), and digitized with a sampling fre-
quency of 500 Hz. Before data analysis, the signals were re-
referenced to the average of the left and right mastoids and digi-
tally filtered with a low pass filter with cut-off at 30 Hz. Artifact
detection and rejection was carried out using the criteria defined
in the section ”Raw Data Inspector” in the BrainVision User
Manual [15]. The artifact rejection was applied to the channels
of interest individually.

3. Temporal Response Functions
The mTRF approach described in [5] makes the simplifying as-
sumption that the brain is a linear system that is completely
identified by its impulse response, i.e., its response to the sim-
plest possible input, which consists of a very brief excitation.
This is reminiscent of the practice in EEG studies to use brief
stimuli, with large refractory periods between stimuli. Impulses
are so useful in system identification because the corresponding
frequency spectrum is flat over a very wide bandwidth. White
noise, with a sufficiently long duration, has the same advantage,
and has also been widely used in system identification research.
However, neither impulses nor white noise are useful for inves-
tigating the listeners’ neural response to speech. Fortunately, it
can be shown that the mathematics underlying system identifi-
cation can be extended to arbitrary input signals. This makes
it possible to obtain a useful estimate of the neural response to
continuous speech [16].

Using the continuous EEG recordings from a complete

stimulus, in parallel with the speech input, we compute an
mTRF function for each individual stimulus. To synchronize
the speech input with the EEG signals with 500 Hz sampling
frequency we compute the loudness envelope of the speech,
sampled at a rate of 500 Hz, and also low pass filtered at 30
Hz. For this purpose we used the software described in [17].
We use the mTRF functions to predict the EEG signals evoked
by the full and reduced stimuli, without the non-stimulus related
EEG activity. It is plausible to expect that differences between
full and reduced stimuli, if they exist, will be more evident in
the predicted output.

4. Analysis and results
We analyzed the EEG traces of the Cz electrode for the iso-
lated and the mid-sentence stimuli by using Generalized Addi-
tive Modeling (GAM) [12, 18, 19]. Next to methods like growth
curve analysis, functional data analysis and sparse functional
linear mixed modeling, GAMs extend linear models in which a
linear relationship between predictors and dependent variables
is assumed. In a linear regression model all non-linear relations
between the dependent variable and predictors must be specified
by means of fixed algebraic expressions. In a GAM, a predictor
can be expressed by a non-linear smooth function, and interac-
tions can be combined in a multivariate (hyper)surface smooth.
The advantage of GAMs over the manual specification of non-
linearities in an lmer() is the flexibility: the optimal shape
of the non-linearity is determined automatically, and the appro-
priate degree of smoothness can be determined on the basis of
cross-validation to prevent overfitting. In GAMs, also random
effects can be treated as smooths [12, 18].

To investigate whether in the mTRF data the full-reduced
condition was more significantly different than in the non-
mTRF data, we combined the raw (non-mTRF) and mTRF data
and estimated a combined GAM model in which the the interac-
tion between the two 2-level predictors (’without/with mTRF’)
and (’full/reduced’) was included. The significance of this in-
teraction provides information about whether the mTRF predic-
tion significantly increases the difference between the full and
reduced conditions. Models were always compared by using
compareML().

4.1. Isolated word data

For the isolated word stimuli (1,791,900 data points), the fol-
lowing GAM was found to be optimal:

GAMmodel = bam(amplitude˜

be.ge.ver + full.red ∗ exp
+s(word dur, k = 20) +

s(t, by = full.red, k = 50)

+s(t, by = exp, k = 50) + ti(t,a dur) +

s(subject, bs = ”re”) + s(stimulus, bs = ”re”),

data = data, samfrac = 0.1, gc.level = 2,

correlation = corAR1())

EEG amplitude serves as dependent variable, ’be.ge.ver’ de-
notes the 3-level predictor denoting the prefix, ’full.red’ denotes
the predictor full/reduced, ’exp’ denotes the categorical predic-
tor without/with mTRF, t denotes the physical time (in 2 ms
steps, from 200 ms before to 900 ms after onset), and ’@ dur’
denotes the duration of the /@/. Subject and stimulus are used
as random effects. Residual correlations are modeled away by
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Figure 1: Observed (black) and modeled (blue) EEG Cz trace
for full and reduced isolated words, raw data. The horizontal
axis displays time in ms; 0 refers to word onset. Dashed and
solid lines refer to reduced and full stimuli.

Table 1: Parametric coefficients of the GAM modeled on iso-
lated words.

Estimate std.
error t Pr(> |t|)

(Intercept) -0.45126 0.31262 -1.444 0.148878
be.ge.ver [ge] 0.06531 0.24831 0.263 0.792526
be.ge.ver [ver] 0.45653 0.21054 2.168 0.030131
full.red [red] 0.07624 0.02290 3.329 0.000873
exp [raw] 0.42329 0.01708 24.778 < 2e-16
full.red [full]
: exp [raw] -0.11372 0.02414 -4.712 2.46e-06

Approximate significance of smooth terms
edf Ref.df F p

s(word dur) 18.71 18.98 98.233 < 2e-16
s(t) : full.red [full] 11.22 13.73 0.566 0.931613
s(t) : full.red [red] 22.37 26.96 2.207 0.000311
s(t) : exp [mtrf] 26.78 31.93 3.408 2.63e-10
s(t) : exp [raw] 46.51 48.41 45.339 < 2e-16
ti(t, @ dur) 15.59 15.97 33.115 < 2e-16
s(subject) 19.99 20.00 2548.440 < 2e-16
s(stimulus) 76.55 77.00 263.696 < 2e-16

the GAM function corAR(); the function bam is a fast imple-
mentation of a GAM [18]. The result on isolated word data is
presented in Table 1.

Levels of factor predictors are shown between square brack-
ets. This model explains 5.39% of the variance in the observed
EEG data. It can be seen that not only the predictors ’with-
out/with mTRF’ and ’full/reduced’ are significant, but in ad-
dition their interaction is significant. An analysis of the main
predictor coefficients and the interaction in this table shows that
the difference between full and reduced ’with-mTRF’ is about
twice as large as in the ’without-mTRF’ condition.

4.2. Mid-sentence data

The finding that mTRF predictions improve the separation of
full and reduced trials with isolated words justify the application
of the same technique to the mid-sentence data, where previous
analyses, based on raw EEG signals, did not uncover significant
differences [13]. The mTRFs were computed on complete sen-
tence stimuli; subsequently, the EEG signals for the complete

Table 2: Parametric coefficients, mid-sentence stimuli

Estimate std.
error t Pr(> |t|)

(Intercept) -0.132 0.116 -1.132 0.258
be.ge.ver [ge] -0.127 0.133 -0.954 0.340
be.ge.ver [ver] 0.242 0.013 18.733 <2e-16
full.red [red] 0.066 0.0112 5.606 2.07e-08

Approximate significance of smooth terms
edf Ref.df F p

s(word dur) 18.96 19.00 262.68 <2e-16
s(time):full.red fac0 28.15 34.22 22.18 <2e-16
s(time):full.red fac1 26.21 32.05 13.36 <2e-16
s(subject fac) 25.94 26.00 434.70 <2e-16
s(stimulus fac) 77.80 78.00 417.94 <2e-16

sentence were predicted using the mTRF model, and 2000 ms
intervals starting 200 ms before the onset of the target words
were segmented from the predicted EEG signals.

A GAM model that simultaneously analyzed the mTRF
predictions and the raw signals showed a significant interac-
tion between the factors full.reduced and raw.mTRF. This sig-
nificance justifies independent analyses of the raw and mTRF-
predicted signals. In the model for the raw signals the factor
full.reduced was not significant. The model for the mTRF pre-
dicted signals was defined as

GAMmidsentence = bam(amplitude˜

be.ge.ver + full.red

+s(word dur, k = 20)

+s(time, by = full.red, k = 50)

+s(subject, bs = ”re”)

s(stimulus, bs = ”re”),

data = data, samfrac = 0.1, gc.level = 2,

correlation = corAR1())

As in [10] the GAM models were used to predict the mean
Cz EEG traces. For the isolated word models, figure 1 shows
the comparison between the mean observed raw (black lines)
Cz EEG signal and the signal predicted by the GAM in Ta-
ble 1 (blue lines). Figure 2 shows the mean observed and pre-
dicted mTRF-mapped EEG signals, modeled by the same GAM
model. While the model is estimated on the combined datasets,
it is able to follow the dynamic structure in the EEG quite well,
both for full (solid lines) and reduced (dashed lines) stimuli.

5. Discussion and conclusion
The main goal of this paper was to investigate whether mTRF
predictions of neural activity, which are supposed to offer a
more focused view of the EEG activity induced by experimen-
tal stimuli, can uncover subtle differences between treatments
when the conditions are adverse, i.e., when treatment-related
stimulation overlaps with stimulation not related to the treat-
ment. For the isolated word stimuli, where there is only lit-
tle or no concurrent linguistic processing going on that is not
related to the spoken words the GAM models already showed
that the difference between full and reduced stimuli is enhanced
by the mTRF predictions, relative to the raw EEG signals. In
a previous study [10] we failed to find significant differences
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in the mid-sentence experiment. Here, we do find that mTRF-
predicted EEG signals differ significantly between sentences
with full and reduced versions of the target verbs. We attribute
the difference to the details of the mTRF processing. In the pre-
vious study we analyzed pre-segmented epochs, for which we
used the isolated word stimuli as the exogenous excitation. In
addition, we estimated a single mTRF for all reduced and for all
full stimuli. Here, we take into account the experience that par-
ticipants in lengthy psycholinguistic experiments tend to vary
their behavior and their attention quite substantially during the
course of an experiment. That makes it reasonable to estimate
mTRF responses on a local, stimulus-by-stimulus basis.

The differences between the full and reduced stimuli in
the mid-sentence experiment are quite subtle (compare, e.g.,
Figs. 3, 4). In a sample-by-sample t-test we did not find time in-
tervals in which the full and reduced stimuli were significantly
different, neither in the raw, nor in the mTRF-predicted signals.
The fact that a GAM model does show that the full and reduced
conditions differ significantly shows that these differences are
quite subtle, and only show up if additional confounding fac-
tors can be teared apart in the statistical analysis. Upfront, it
was not clear whether there are differences in the mid-sentence
condition, where both pronunciation variants of the verbs are
appropriate (perhaps with a small preference for the reduced
form). The fact that the tandem of mTRF prediction and GAM
modeling uncovers differences opens interesting perspectives
for future research with running speech.

In [10], sample-by-sample t-tests on the approximations
by the GAM model showed that full and reduced forms dif-
fered significantly over different time intervals, but in the mid-
sentence data only the interval around 150 ms after word on-
set was assumed to be potentially meaningful because it could
be related to the P200 component assumed to reflect low-level,
sensory/phonological processing of speech [20]. Upon visual
inspection, the modeled EEG traces of the mTRF predicted sig-
nals fail to show this difference at 150 ms post word onset and
they do not show a clear positive component in this time interval
either. Possibly, the emergence of a P200 in [10] was an arti-
fact, caused by the fact that the mTRF estimate was not based
on complete sentences. Without guaranteed word segmentation
in continuous speech the emergence of a P200 that is character-
istic for isolated word processing may be quite unlikely.

Figure 2: Observed mean trace and predicted trace for full and
reduced isolated words, mTRF data. Next to the mean, the de-
viation around the mean (1 sigma) is displayed for the observed
data.

Figure 3: Observed mean trace and modeled trace for full and
reduced mid-sentence words, raw data (i.e., no mTRF).

Figure 4: Observed (blue) mean trace and modeled (red) trace
for full (solid) and reduced (dashed) stimuli (plus 1σ bands, af-
ter mTRF). Predictions are obtained from the combined model.

The mTRF prediction accounts only for a small propor-
tion of the variance in the EEG signals. This is because
stimulus/treatment-induced activity accounts for only a small
proportion of the total EEG activity. Unsurprisingly, the pro-
portion of the total variance that can be captured is larger in the
isolated word data, where fewer nuisance factors are involved.
However, both with isolated words and mid-sentence data, the
coefficient of variation in the mTRF predictions is much smaller
than in the raw signals. This suggests that it is interesting to pur-
sue a more in-depth analysis of the contributions that spectro-
temporal response functions can make to processing of EEG
signals in psycho-linguistic research. Future plans include com-
paring participant-specific response functions.

It is also interesting to analyze additional information that
is present in the GAMs. Preliminary analyses suggest that the
smooths show systematic differences between listeners in the
timing of effects in the EEG and the acoustic stimuli. These
differences could be related to participant-specific mTRFs.
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