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Abstract
Replay attack presents a great threat to Automatic Speaker Ver-
ification (ASV) system. The speech can be modeled as am-
plitude and frequency modulated (AM-FM) signals. In this
paper, we explore speech demodulation-based features using
Hilbert transform (HT) and Teager Energy Operator (TEO) for
replay detection. In particular, we propose features, namely,
HT-based Instantaneous Amplitude (IA) and Instantaneous Fre-
quency (IF) Cosine Coefficients (i.e., HT-IACC and HT-IFCC)
and Energy Separation Algorithm (ESA)-based features (i.e.,
ESA-IACC and ESA-IFCC). For adapting instantaneous en-
ergy w.r.t given sampling frequency, ESA requires 3 samples
whereas HT requires relatively large number of samples and
thus, ESA gives high time resolution.The experiments were
performed on ASV spoof 2017 Challenge database for replay
spoof speech detection (SSD).The experimental results shows
that ESA-based features gave lower EER. In addition, linearly-
spaced Gabor filterbank gave lower EER than Butterworth fil-
terbank. To explore possible complementary information using
amplitude and frequency, we have used score-level fusion of IA
and IF. With HT-based feature set, the score-level fusion gave
EER of 5.24 % (dev) and 10.03 % (eval), whereas ESA-based
feature set reduced the EER to 2.01 % (dev) and 9.64 % (eval).
Index Terms: Spoofing, Hilbert transform, Teager energy op-
erator, energy separation algorithm.

1. Introduction
A voice biometrics system deals with the recognition of a
speaker through his/her voice and also with their humming
sounds [1–3]. However, the recent advances in speech tech-
nologies have posed a great threat to the Automatic Speaker
Verification (ASV) system with various spoofing attacks [4].
There are five types of spoofing attacks, namely, imperson-
ation, replay, speech synthesis (SS), voice conversion (VC) and
twins [5], [6]. The ASV spoof 2017 Challenge was focused
on replay spoof attack. The organizers provided Constant Q
Cepstral Coefficients (CQCC) as a baseline feature set with a
simple Gaussian Mixture Model (GMM) as classifier [7]. Var-
ious countermeasures were proposed for detecting the replay
spoofed speech [8]. Few of the countermeasures focused on the
high frequency spectral information, feature normalization and
the representation learning [9–12]. Recently, we have proposed
Energy Separation Algorithm-Instantaneous Frequency Cosine
Coefficients (ESA-IFCC) [13] and its variable length version
(VESA-IFCC) feature set for SSD task for SS, VC, and replay
detection [14]. The information of Instantaneous Amplitude
(IA) for each subband signal was ignored and only Instanta-
neous Frequency (IF) was considered using Teager Energy Op-
erator (TEO) [13–15]. In this paper, we propose to exploit IA
information in addition to IF with linearly-spaced Gabor fil-
terbank. Furthermore, ESA-based demodulation approach is

compared with the other existing demodulation technique us-
ing Hilbert transform (HT) [16]. In particular, IA and IF-based
features extracted from HT-based Energy Separation Algorithm
(HT-ESA) and Teager Energy Operator-based ESA (TEO-ESA)
are used. To adapt the instantaneous energy w.r.t given sampling
frequency, HT requires a large (by a factor 40-50 number of
samples and hence, it has relatively poor time resolution [17].
While ESA requires only three samples (for a given sampling
frequency) to adapt the instantaneous energy and thus, has ex-
cellent time resolution.

In this paper, results were compared for both the Gabor and
Butterworth filterbank and found the importance of filterbank
parameters, such as (shape of filter, numbers of subband filters,
choice of bandwidth) for spoof speech detection (SSD) task.
Furthermore, to exploit high frequency information and to over-
come channel mismatch conditions, pre and post-processing
(i.e., pre-emphasis filter and cepstral mean normalization) of
a speech signal is used to compute the features. The proposed
feature sets were compared with the Constant Q Cepstral Co-
efficients (CQCC) (baseline system provided by the challenge
organizers), Mel Frequency Cepstral Coefficients (MFCC), Lin-
ear Frequency Cepstral Coefficients (LFCC) on the ASV spoof
2017 Challenge database.

2. Demodulation using HT and TEO
2.1. Hilbert Transform (HT)

One of the demodulation method was proposed using HT [16].
It is implemented by doubling the spectrum for positive fre-
quencies and setting it zero for the negative frequencies (i.e.,
via analytic signal generation) [16], [18]. Therefore, the energy
of the signal does not change (i.e., Parseval’s energy conser-
vation). The HT estimates frequency and amplitude envelope
function of a monocomponent signal. The IA, a(t), instanta-
neous phase, φ(t) = tan−1 xi(t)

xr(t)
, and IF, φ′(t) obtained from

HT-ESA are given as:

a(t) =
√
x2r(t) + x2i (t), (1)

where xr(t) and xi(t) are the real and imaginary parts of the an-
alytic signal. The instantaneous or analytic phase and frequency
is given by:

φ(t) = tan−1 xi(t)

xr(t)
. (2)

φ′(t) =
d

dt
φ(t). (3)

Though HT tracks frequency and amplitude variations, how-
ever, it is based on Fourier transform (FT) and hence, have
the limitations of stationarity and linearity of Fourier analy-
sis [18], [19]. In addition, HT-based IF estimation requires com-
putationally complex task of phase unwrapping in Eq. (3) [20].
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Figure 1: Schematic block diagram of proposed demodulation-based feature sets.

Moreover, unwrapping may not be a unique phenomenon [21].
To alleviate this, recent approach was proposed in [20]. How-
ever, this approach also requires block-based Discrete Fourier
Transform (DFT) processing of speech that requires more than
3 samples. This motivated us to exploit high resolution TEO,
for tracking IA and IF [22], [23].

2.2. Teager Energy Operator (TEO)

An algorithm derived by Teager uses a nonlinear energy track-
ing operator for discrete-time speech signal [24, 25]. The TEO,
Ψ{·} for discrete-time signal, x[n] = A cos(Ωn+ φ), is given
as:

Ψ{x(n)} = x2(n)− x(n− 1)x(n+ 1) ≈ A2Ω2. (4)

Speech signal can be modeled as Amplitude and Frequency
Modulation (AM-FM) signal, since speech signal have variable
amplitude with variations in frequency. Consider an AM-FM
discrete-time form of signal, x[n] = a[n] cos(φ[n]) [22]:

x[n] = a[n] cos

[
Ωcn+ Ωm

∫ n

0

q[k]dk + θ

]
, (5)

with variable IF, Ω[n] = d
dn
φ[n] = Ωc+Ωmq[n]. The TEO can

approximately estimate the squared product of the amplitude,
a[n], and IF, Ω[n] signals, i.e.,

Ψ

(
a[n] cos

(∫ n

0

Ω[m]dm+ θ

))
≈ a2[n]Ω2[n]. (6)

To estimate the individual contribution of amplitude, a[n], and
frequency, Ω[n] Maragos et. al. [22], [23] developed an ESA
using nonlinear energy operator. The energy of a speech signal
is a function of both a[n] and Ω[n] [26]. The IA, a[n], and IF,
Ω[n], at any time instant of modulated signal is given as [18]:

a[n] ≈ 2Ψd{x[n]}√
Ψd{x[n+ 1])− x[n− 1]}

, (7)

Ω[n] ≈ arcsin
√

Ψd{x[n+ 1]− x[n− 1]}
4Ψd{x[n]} . (8)

The key advantages of this ESA algorithm is that it doesn’t re-
quire complex task of phase unwrapping (as required in HT-
based approach Eq. (3)) and in addition only three samples are
required to get a[n] and Ω[n] and thus avoiding the need of
block-based processing of speech [20].

3. Proposed Feature Set
Figure 1 shows the block diagram of our proposed speech
demodulation-based feature set using HT and TEO. Here, the
input speech signal is passed through a pre-emphasis filter
which balance the lower and higher frequencies of a speech sig-
nal (i.e., flattening the magnitude spectrum) [27]. Its system
function is H(z) = 1− az−1. where ‘a’ (filter coefficient) is a
constant with a typical value of 0.97 [27]. The higher formants,

such as F3 and F4 are used for speaker discrimination that are
present in the higher frequency regions [28]. These higher fre-
quency spectral regions are recently found to be important for
replay SSD task [29]. The TEO works on single component sig-
nal and the speech signal is a multicomponent AM-FM signal
and thus, bandpass filtering is needed to isolate each component
of a speech signal. Thus, Gabor filterbank is used as a multi-
band filtering to separate the signal component in the temporal-
domain. The pre-processed speech signal is passed through a
Gabor filterbank to obtain (N=40) subband filtered signals. We
have used Gabor filter g(t) as it is compact and smooth (i.e.,
g(t) ε C∞ which is function space of infinitely differentiable
functions), and hence, it has optimal joint time-frequency reso-
lution (since Fourier transform of Gaussian is a Gaussian) [30].
The impulse response, g(t), and frequency response, G(ω), of
a Gabor filter is given as [23], [26] :

g(t) = exp(−b2t2) cos(ωct), (9)

G(ω) =

√
π

2b

[
exp

(
− (ω − ωc)

2

4b2

)
+ exp

(
− (ω + ωc)

2

4b2

)]
,

(10)
where ωc is the center frequency (in Hz) of the filter and b is a
parameter for controlling the bandwidth of a filter. The Gaus-
sian shape of G(ω) avoids producing side lobes that could pro-
duce the false pulses in the output of demodulation (HT/ TEO).
This narrowband filtered signal is then passed through both de-
modulation techniques, i.e., HT-ESA and TEO-ESA. The esti-
mated IA and IF profiles are passed through frame blocking and
averaged over a short window of 20 ms and with a shift of 10
ms. The Discrete Cosine Transform (DCT) is used to obtain
a low-dimensional feature representation. These feature sets
were again post-processed with Cepstral Mean Normalization
(CMN) technique to overcome the channel mismatch/ distortion
between the training and testing conditions [31–33]. Further-
more, the 40 static coefficients of IA and IF were retained and
appended along with their ∆ and ∆∆ features to get higher-
dimensional feature set.

3.1. Filterbank Used

A single speech signal is modeled as the exponentially damped
AM-FM signal and the speech signal is a sum of the AM-
FM signal [34]. Before applying the demodulation technique,
we need to extract the resonance characteristics of the signal
through bandpass filtering. In the earlier studies, it was ob-
served that with bandpass filtering of the original signal, the
(single or double) spike at the jump instant are converted to
smooth sinusoidal curves [17]. The bandpass filtering actually
filters out the higher frequency components of the amplitude
envelope and instantaneous frequency. We have extracted our
feature set using two filterbanks, namely, Butterworth and Ga-
bor. In our earlier work, we have used Butterworth filterbank
with linearly-spaced filters across entire frequency range [13].
In this paper, we have compared results with both linearly-
spaced Butterworth and Gabor filterbanks. The use of linear
scale makes the feature extraction process more reliable as all
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the filters have almost equal bandwidths [15]. The effect of
the Gabor filterbank is to smooth out the spikes and the abrupt
jumps (if any) of the original estimates where high frequency
components are preserved [17]. The spectral energy density
obtained with 40 number of subband filtered signals is shown
in Figure 2. The time-domain speech signal of the utterance,
“Actions speak louder than words,” is shown in Figure 2 (a),
whereas Figure 2 (b) and Figure 2 (c) shows the spectral energy
density obtained from Butterworth and Gabor filterbanks (both
having 40 subband filters), respectively. The spectral energies
obtained from the Gabor filterbank preserves more of the lower
frequency information (highlighted with the dotted box) than
the spectral energies obtained from the Butterworth filterbank.
These lower frequency information provides the lower formant
information (i.e., F1 andF2) that contains the information about
the message present in the signal. The higher formants (i.e.,F3

and F4) present in higher frequency region is also preserved
because of linear frequency scale. These higher formants are
important for speaker discrimination [35]. The higher formants
are preserved because of linearly-spaced Gabor filterbank.

Figure 2: Comparison of spectral energy density between But-
terworth and Gabor filterbank. (a) time-domain speech signal,
spectral energy density of (b) Butterworth filterbank, and (c)
Gabor filterbank obtained with 40 subband filtered signals.

4. Experimental Setup
The experiments were performed on ASV spoof 2017 Chal-
lenge database which was focused only on replay spoof at-
tacks [36]. The details of statistics of database, recording con-
ditions, playback, and recording devices are provided in [8].
The proposed features, i.e., HT-IACC, HT-IFCC, ESA-IACC,
and ESA-IFCC were extracted from 40 narrowband filtered sig-
nals with 40 static coefficients appended with ∆ and ∆∆ re-
sulting in the 120-dimensional feature vector. The Gabor fil-
terbank was computed with linear frequency scale from Fmin=
10 Hz and Fmax= 8000 Hz. The feature dimension for MFCC
was kept as 39-D (static+∆+∆∆) and for CQCC, it was 90-
D (static+∆+∆∆). We have used Gaussian Mixture Model
(GMM) as classifier with 512 number of mixtures. The deci-
sion of the speech signal of being genuine or replayed is based
on the scores of Log-Likelihood Ratio (LLR) [3]:

LLR = log
P (X|H0)

P (X|H1)
, (11)

where P (X|H0) and P (X|H1) are the likelihood scores for
genuine and replay trials (with hypothesis H0 and H1), respec-
tively. To explore the complementary information of proposed

feature set, score-level fusion was performed with CQCC,
MFCC and LFCC feature set as per Eq. (12):

LLKfused = αLLKfeature1 + (1− α)LLKfeature2, (12)

where LLKfeature1 is a log-likelihood score of CQCC, MFCC
and LFCC LLKfeature2 is the score of our proposed feature
set. The fusion parameter (α ) lies between 0 < α < 1 to decide
the weight of scores. The performance of a voice biometric
system is generally calculated by the Equal Error Rate (EER). It
corresponds to a threshold at which the False Acceptance (FA)
rate is equal to the False Rejection (FR) rate. The FA and FR
of a verification system define different operating points on the
Decision-Error Trade-off (DET) curve [37].

5. Experimental Results
Table 1 shows the result of proposed feature set extracted from
the Gabor filterbank along with the effect of logarithm method.
The AM feature set extracted from HT and ESA with log per-
formed better than those extracted from without log. On other
hand, FM feature set when extracted with log did not reduced
the EER, as the IF have more fluctuations because of which the
dynamic range varies more as compared to the IA feature and
thus, the FM feature set with log did not gave better results.

Table 1: Effect of log on proposed feature set with Gabor filter-
banks on dev and eval set

Feature Without Log Log
Set Dev Eval Dev Eval

HT-IACC 32.76 39.90 07.27 12.12
HT-IFCC 14.07 14.62 31.81 38.65

ESA-IACC 29.05 33.94 06.48 12.00
ESA-IFCC 04.12 12.79 37.35 28.29

5.1. Results on Different Filterbank Used

The results of the AM-FM features with Butterworth and Ga-
bor filterbanks are shown in Table 2. The overall performance
with Gabor filterbank shows better results than Butterworth fil-
terbank. The ESA-IFCC feature set gave an EER of 4.12 % on
dev set with Gabor filterbank while on eval, it is 12.79 %, which
is much lower EER than the features extracted from the But-
terworth filterbank.This indicates that the choice of a linearly-
spaced Gabor filterbank indeed helps for feature extraction.

Table 2: Results of proposed feature set with Butterworth and
Gabor filterbanks on dev and eval set

Feature Set Butterworth Gabor
Dev Eval Dev Eval

HT-IACC (A) 09.74 19.27 07.27 12.12
HT-IFCC (B) 15.41 39.40 14.07 14.62

ESA-IACC (C) 17.59 21.43 06.48 12.00
ESA-IFCC (D) 18.82 28.69 04.12 12.79

5.2. Results with Score-Level Fusion
The database organizers provided a baseline system with CQCC
as the feature set [8]. To explore the possible complementary in-
formation captured by various feature sets, we have used their
score-level fusion. We have compared our results with CQCC,
MFCC and LFCC feature sets, LFCC is used for comparison
of our results because the proposed feature extraction was done
with linear scale. The results of score-level fusion with our pro-
posed feature sets obtained from Gabor filterbank is shown in
Table 3. The results on dev set reduced the EER in almost every
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Figure 3: Individual DET curves of CQCC, MFCC, LFCC, A+B (score-level fusion of HT-IACC+HT-IFCC) and C+D (score-level
fusion of ESA-IACC+ESA-IFCC) feature sets on (a) dev set and (b) eval set. Dotted circle indicated better performance for SSD task

case whereas on eval set, except for the few cases, it reduced the
individual EER. On dev set, score-level fusion EER of CQCC,
MFCC and LFCC feature set with ESA-IFCC reduced (from
4.12 %) to 2.35 %, 2.41 % and 2.82 %, respectively. While on
eval set, the fusion reduced the EER almost to 12.02 % (CQCC),
12.79 % (MFCC) and 11.16 % (LFCC). On the other hand, for
ESA-IACC feature set, the EER via score-level fusion was re-
duced for only few cases on both dev and eval set. Better re-
sults were obtained via fusion with ESA-based technique than
its HT-based counterpart.

Table 3: Results with score-level fusion of CQCC, MFCC,
LFCC and proposed feature sets (A-D)

Feature CQCC MFCC LFCC
Set Dev Eval Dev Eval Dev Eval
A 03.74 11.47 04.39 12.12 07.19 12.12
B 05.33 14.16 05.80 14.62 07.60 11.62
C 04.07 11.30 04.12 12.00 06.48 12.00
D 02.35 12.02 02.41 12.79 02.82 11.16

A: HT-IACC, B: HT-IFCC, C: ESA-IACC, D: ESA-IFCC

To explore the possible complementary information present
in the proposed HT and ESA-based feature sets, we have fused
the individual IA and IF-based information. The proposed fea-
tures are amplitude and frequency-based, (i.e., the amplitude-
based feature set do not have any information of frequency and
vice-versa). This fusion indeed helps to reduce the EER fur-
ther for both HT and ESA-based feature sets. The results of
fusion of these proposed feature sets is shown in Table 4. When
the HT-IACC and HT-IFCC feature sets were fused at a score-
level, on dev set the EER reduced to 5.24 % and on eval set,
it reduced to 10.03 %. Similarly, when ESA-IACC and ESA-
IFCC feature sets were fused at score-level, the EER further
decreased to 2.01 % on dev set and on eval set, it gave the better
result of 9.64 %. The overall results are summarized in Table
4. The baseline system using CQCC provided by the organiz-
ers of ASV Spoof 2017 Challenge has much higher EER (28.48
%) on eval set. The results with MFCC and LFCC on eval set
gave an EER of 31.31 % and 16.62 %, respectively. Our pro-
posed best result obtained after the score-level fusion of ESA-
IACC and ESA-IFCC feature set with an EER of 2.01 % on
dev set and 9.64 % on eval set. The performance is also shown
by the DET curves in Figure 3 (a) for dev set and Figure3 (b)

for eval set with different feature sets CQCC, MFCC, LFCC,
score-level fusion (HT-IACC+HT-IFCC) and score-level fusion
(ESA-IACC+ESA-IFCC). On dev and eval set, score-level fu-
sion (ESA-IACC+ESA-IFCC) shows relatively better perfor-
mance for all the operating points of DET curve and have sig-
nificantly lower false alarm and miss probabilities in the DET
curve when compared to CQCC, MFCC and LFCC feature sets
(shown by dotted circle).

Table 4: Comparison of best proposed feature set with other
feature set on dev and eval set

Feature Set Dev Eval
CQCC (Baseline) 10.35 28.48

MFCC 11.21 31.30
LFCC 10.58 16.62
A+B 05.24 10.03

Proposed best result (C+D) 02.01 09.64
A: HT-IACC, B: HT-IFCC, C: ESA-IACC, D: ESA-IFCC

6. Summary and Conclusions
In this study, we studied the demodulation-based features to de-
tect natural vs. replayed spoofed speech. The computation of
IA and IF from HT-ESA and TEO-ESA was affected by the pa-
rameters of filter, namely, shape of filter, choice of bandwidth,
time resolution, etc. In particular, linearly-spaced Gabor filter-
bank performed better than its Butterworth counterpart. The
proposed ESA-based feature set gave lower EER than the HT-
based feature set. To explore the complementary information
of proposed feature set, we fused them with existing feature
sets, namely, CQCC, MFCC and LFCC. The results obtained
after score-level fusion gave relatively lower EER than the indi-
vidual EER. Furthermore, when the proposed feature sets itself
when fused at a score-level (i.e., ESA-based IACC+IFCC) gave
the best lower EER. Our future work includes the study of re-
verberation, frequency response characteristics of the replayed
device in the higher frequency regions and its relevance for SSD
task.
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