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Abstract 

Most voice conversion (VC) systems are established under the 

vocoder-based VC framework. When performing spectral 

conversion (SC) under this framework, the low-dimensional 

spectral features, such as mel-ceptral coefficients (MCCs), are 

often adopted to represent the high-dimensional spectral 

envelopes. The joint density Gaussian mixture model (GMM)-

based SC method with the STRAIGHT vocoder is a well-

known representative. Although it is reasonably effective, the 

loss of spectral details in the converted spectral envelopes 

inevitably deteriorates speech quality and similarity. To 

overcome this problem, we propose a novel exemplar-based 

spectral detail compensation method for VC. In the offline 

stage, the paired dictionaries of source spectral envelopes and 

target spectral details are constructed. In the online stage, the 

locally linear embedding (LLE) algorithm is applied to predict 

the target spectral details from the source spectral envelopes, 

and then, the predicted spectral details are used to compensate 

the converted spectral envelopes obtained by a baseline 

GMM-based SC method with the STRAIGHT vocoder. 

Experimental results show that the proposed method can 

notably improve the baseline system in terms of objective and 

subjective tests. 

Index Terms: locally linear embedding, exemplar, Gaussian 

mixture model, vocoder, voice conversion 

1. Introduction 

Voice conversion (VC) transforms one type of speech to 

another, without changing the linguistic content. Speaker VC, 

which converts a source speaker’s speech to a target speaker’s 

speech, is a typical VC task. Most speaker VC systems 

perform spectral, prosodic, and excitation conversions under 

the vocoder-based VC framework. In this paper, we focus on 

spectral conversion (SC) using the STRAIGHT vocoder [1].  

Numerous SC methods have been proposed during the last 

two decades. Among them, statistical methods operating on 

various low-dimensional spectral features, e.g., mel-ceptral 

coefficients (MCCs) [2], have been extensively studied due to 

the advantages of high computational efficiency and avoiding 

the curse of dimensionality problem [3-7]. The joint density 

Gaussian mixture model (GMM)-based method is a 

representative [4, 5]. The maximum likelihood parameter 

generation (MLPG) method for reducing discontinuity and the 

global variance (GV) and modulation spectrum (MS) methods 

for overcoming the over smoothing problem have been 

successfully applied to a GMM-based SC system [5, 6]. 

Although notable improvements have been achieved, the loss 

of spectral details in the high-dimensional STRAIGHT 

spectral envelopes reconstructed from the converted low-

dimensional spectral features may still affect the similarity and 

speech quality of converted speech.  

Several methods have been proposed to tackle this 

problem by directly conducting SC on the spectral envelopes. 

For instance, the deep neural network-based methods learned 

the mapping between the source and target spectral envelopes 

[8, 9]. The exemplar-based methods generated the converted 

spectral envelopes using the weighted linear combination of 

the target spectral envelope exemplars, where the weights 

were estimated by nonnegative matrix factorization (NMF) 

[10, 11] or a locally linear embedding (LLE) method [12]. 

Even with such efforts, the GMM-based SC method (using 

MCCs) is still very competitive today [13]. Our previous study 

also showed that the LLE-exemplar-based SC with the low-

dimensional MCCs outperformed that with the high-

dimensional spectral envelopes [14].  

Another direction is to avoid using the STRAIGHT 

vocoder for waveform generation. For instance, the neural 

network-based vocoder has been proposed recently for VC 

and shown promising results [15]. However, it requires a huge 

amount of training data for high quality synthesis while the 

conventional vocoder does not require any training data. On 

the other hand, a vocoder-free VC framework has also been 

proposed [16]. Although notable improvements in speech 

quality in the intra-gender VC pairs have been achieved, the 

performance is comparable with the vocoder-based framework 

in terms of speech quality and similarity in the inter-gender 

VC pairs. Therefore, it is still worthwhile to further investigate 

the vocoder-based VC method.  

In this paper, we propose an exemplar-based spectral 

detail compensation method for any SC methods that worked 

on low-dimensional spectral features. We use the GMM-based 

SC method operating on the MCCs under the STRAIGHT 

vocoder as a case study. Specifically, the predicted spectral 

details are used to compensate the converted spectral 

envelopes obtained by a GMM-based SC method. The LLE 

algorithm is adopted for spectral detail prediction due to its 

satisfactory ability to handle the high-dimensional spectral 

features in LLE-based SC [12] and speech enhancement [17-

19]. The remainder of this paper is organized as follows. The 

proposed spectral detail compensation method is described in 

Section 2. Experimental setup and results are presented in 

Section 3. Finally, Section 4 gives the conclusions. 

2. The proposed spectral detail 

compensation method 

2.1. System overview 

Figure 1 gives an overview of the run-time conversion stage of 

the proposed spectral detail compensation method. Given a 
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source speech for conversion, the source spectral envelopes 

and MCCs (each source spectral envelope or MCC vector is 

composed of multi-dimensional static, delta, and delta-delta 

features) are extracted by the STRAIGHT vocoder first. Next, 

the GMM-based SC method is applied to convert the source 

MCCs to the converted spectral envelopes (reconstructed from 

the converted MCCs). Meanwhile, the LLE-based spectral 

detail prediction (LLE-based SDP) method followed by an 

additional “MLPG+GV” module is applied to predict the 

target spectral details from the source spectral envelopes. 

Finally, the predicted spectral details are used to compensate 

the converted spectral envelopes. The waveform can be 

reconstructed by the converted spectral envelopes and other 

acoustic features (described later) using the STRAIGHT 

synthesis method. In the following, we detail the offline and 

online stages of the LLE-based SDP method and the complete 

spectral detail compensation process. 

2.2. Offline stage of the LLE-based SDP method 

The offline stage of the LLE-based SDP method mainly 

involves the construction of the paired source and target 

dictionaries in the following steps: 1) preparing a parallel 

speech corpus consisting of the source and target speakers’ 

voices; 2) extracting the MCCs and spectral envelopes from 

the source and target speakers’ voices; 3) computing the 

reconstructed target spectral envelopes by reverting the target 

MCCs back to the spectral envelopes; 4) computing the  target 

spectral details by subtracting the reconstructed target spectral 

envelopes from the target spectral envelopes; 5) computing the 

dynamic features of the source spectral envelopes and the 

target spectral details, and then appending the dynamic 

features to the corresponding static spectral envelopes and 

spectral details; 6) performing dynamic time warping (DTW) 

to align the source and target MCCs to obtain the frame 

alignment information; 7) applying the frame alignment 

information to the source spectral envelopes and the target 

spectral details to obtain the aligned source spectral envelopes 

and target spectral details; 8) constructing the paired source 

spectral envelope and target spectral detail dictionaries from 

the aligned source spectral envelopes and target spectral 

details. 

In step 4), the target spectral details are computed as 

follows. Let  1
, , , ,

n N
c c c c and  1

, , , ,
n N

c c c c  be the 

sequences of the target spectral envelope and reconstructed 

target spectral envelope vectors, respectively. N denotes the 

number of speech frames, and the dimensionality of each 

spectral envelope vector (i.e.,  
1

N

n n 
c  and  

1

N

n n 
c ) is D. Then, 

the sequence of the target spectral detail vectors (denoted as

 1
, , , ,

n N
r r r r ) is computed as  r c c . After 

conducting steps 4) and 5), the covariance matrix of the 3D-

dimensional target spectral detail vectors (composed of D-

dimensional static, delta, and delta-delta features) and the 

global variances of individual elements of the target (static) 

spectral detail vectors are estimated to be used by the 

“MLPG+GV” module in the online stage. After conducting 

step 6), when multiple source frames are aligned with a certain 

target frame, or multiple target frames are aligned with a 

certain source frame, only one source-target pair is kept and 

used to construct the paired dictionaries. The necessity of this 

strategy has been confirmed in LLE-based SC [12, 14]. 

2.3. Online stage of the LLE-based SDP method 

Given a sequence of source spectral envelope vectors 

extracted from a source speech, the LLE-based SDP method is 

applied to convert each source spectral envelope vector to a 

corresponding target spectral detail vector independently in a 

frame-by-frame manner. Specifically, let 3 1D

t


X  be the 

source spectral envelope vector at frame t composed of the D-

dimensional static t
x , delta (1)

t
 x , and delta-delta ( 2 )

t
 x  

vectors, i.e., 
(1) ( 2 )

, ,
t t t t


  

   
 

X x x x , where the superscript 

  denotes transposition. The LLE-based SDP method has 

three steps. First, a locally linear patch is identified by finding 

K nearest neighbors (measured by the Euclidean distance) of 

t
X  from the source dictionary. Second, the local geometry of 

the locally linear patch is characterized by a reconstruction 

weight vector estimated by minimizing the reconstruction 

error 
t

  subject to the constraint 1
t


1 w  (for the purpose of 

translational invariance) at frame t:  

 
2

,  s.t. 1
t t t t t




  X A w 1 w                   (1) 

where 3 D K

t


A is a matrix (a subset of the source 

dictionary) composed of K nearest neighbors of 
t

X , i.e., 

,1 , ,
, , , ,

t t t k t K
   A a a a , where 

3 1

,

D

t k


a  is the k-th 

nearest neighbor of t
X ; 1K

t


w  is the reconstruction 

weight vector at frame t ; and 
1K 

1 is a vector whose 

elements are all ones. Solving 
t

w by minimizing 
t

  subject 

to the constraint is a constrained least square problem, and the 

solution can be found in [12, 14, 20]. 

Third, with the assumption that the source spectral 

envelopes and the target spectral details share a similar local 

geometry in their respective feature spaces (manifolds), the 

predicted spectral detail vector  
3 1ˆ D

t


R  at frame t can be 

obtained by 

 ˆ
t t t
R B w                                     (2) 
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Figure 1: Overview of the run-time conversion stage of the 

proposed spectral detail compensation method. 
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where 
t

w is the reconstruction weight vector obtained in 

the second step; 3 D K

t


B is a matrix (a subset of the 

target dictionary) corresponding to 
t

A , and is composed 

of K target spectral detail vectors, i.e., 

,1 , ,
, , , ,

t t t k t K
   B b b b , where 3 1

,

D

t k


b  is the k-th 

spectral detail vector in 
t

B  corresponding to (aligned 

with) 
,t k

a . 

Once the frame-by-frame prediction process is completed, 

a sequence of predicted spectral detail vectors 
3ˆ D T

R is 

obtained as 
1

ˆ ˆ ˆ ˆ, , , ,
t T

 
 

R R R R , where T is the number 

of speech frames of the source speech. 

2.4. Spectral detail compensation 

As shown in Figure 1, to further enhance the predicted spectral 

details 
3ˆ D T

R , the “MLPG+GV” method is used (in the 

same way as it was used in LLE-based SC [12, 14]) to 

generate a final sequence of static spectral detail vectors 

ˆ
D T

r , i.e., 
1

ˆ ˆ ˆ ˆ, , , ,
t T

 
 

r r r r , where 1
ˆ

D

t


r  is the 

final spectral detail vector at frame t. 

Finally, the sequence of the converted spectral envelopes, 

i.e., 
1

ˆ ˆ ˆ ˆ[ , , , , ]
t T

y y y y , obtained by the GMM-based SC 

method, and the sequence of the spectral detail vectors, i.e., 

1
ˆ ˆ ˆ ˆ, , , ,

t T
 
 

r r r r , given by the LLE-based SDP method 

and the “MLPG+GV” method, are added to generate the final 

sequence of the converted spectral envelope vectors. That is, 

ˆˆ ˆ*  y y r , where * * *

1
ˆ ˆ ˆ ˆ* [ , , , , ]

t T
y y y y  is the final 

sequence of the converted spectral envelope vectors, and 
* 1

ˆ
D

t


y  is the final converted spectral envelope vector at 

frame t. The missing spectral details in the converted spectral 

envelopes ŷ  are compensated by r̂ . 

3. Experiments 

3.1. Experimental setup 

Our experiments were conducted on the Sinica COSPRO 

speech corpus [21]. The corpus contained 9 datasets. The 

intonation-balanced dataset (i.e., COSPRO 03) consisting of 

Mandarin parallel speech utterances of 3 females and 2 males 

was used in the experiments. There were 20 pairs of 

conversions: 8 intra-gender and 12 inter-gender. For each 

conversion pair, 10 utterance pairs were randomly selected as 

the training set, 40 utterance pairs as the development set, and 

43 utterance pairs as the test set. Speech signals were recorded 

in 16 kHz/16 bit format. Silence segments at the start and end 

of each utterance in the training set were discarded based on 

the segmentation information in the corpus. 

The STRAIGHT vocoder [1] was employed to extract the 

smoothed spectral envelopes, aperiodicity components (AP), 

and pitch contours (F0), at 5 milliseconds steps. The FFT 

length was set to 1024; thus, the AP and spectral envelopes for 

each frame were 513-dimensional. The SC systems compared 

in the experiments operated on either spectral envelopes 

and/or MCCs (extracted from the spectral envelopes) to obtain 

the converted spectral envelopes. The same linear mean-

variance transformation was used for F0 conversion. The 

source speaker’s energy and AP were kept unmodified. 

Therefore, the converted spectral envelopes, converted F0, and 

source speaker’s AP were passed to the STRAIGHT vocoder 

for waveform reconstruction. We compared two SC systems: 

 GMM (Baseline): The baseline GMM-based SC method 

integrated with both MLPG and GV algorithms [5]. 

 GMM-SDC (Proposed): The proposed method that 

combines the baseline GMM system with the spectral 

detail compensation method. 

For the baseline GMM system, the number of mixture 

components was set to 64, according to the objective scores 

and informal listening test measured on the development set. 

A cross-diagonal covariance matrix was used in the JDGMM. 

The spectral features were the first through 24th MCCs 

extracted from the STAIGHT spectral envelopes. The static, 

delta, and delta-delta features were used. Accordingly, the 

dimensionality of a final MCC vector was 72. 

The proposed GMM-SDC system was built on top of the 

baseline GMM system. The spectral features used in the LLE-

based SDP method were the 513-dimensional (log energy-

normalized) spectral envelopes. Specifically, each frame of 

STRAIGHT spectral envelopes was normalized to unit-sum, 

and the energy normalizing factor was taken out as an 

independent feature and was not modified. Then, a logarithm 

was applied to each energy-normalized spectral envelope 

value. Moreover, the static, delta, and delta-delta features were 

used. Accordingly, the dimensionality of a final spectral 

envelope vector was 1539. After SC, the log energy-

normalized spectral envelopes were reverted back to the 

(linear) spectral envelopes, and the energy was compensated 

back to the spectral envelopes according to the energy 

normalizing factor. The number of nearest neighbors (K in (1) 

and (2)) was set to 1024, according to the computational 

complexity, objective scores, and informal listening test 

measured on the development set. 

3.2. Objective evaluations 

The objective evaluation was conducted on the test set in 

terms of the modulation spectrum (MS) [6]. The MS of an 

acoustic feature sequence is defined as the log-scaled power 

spectrum of the sequence. Therefore, the MS can be used to 

measure the temporal fluctuation of the feature sequence. 

Different from the previous study [6], we measured the MS of 

each dimension of the STRAIGHT spectral envelope sequence 

rather than the MS of each dimension of the MCC vector 

sequence since the proposed method is applied to compensate 

missing details in the converted spectral envelopes. Figure 2 

shows the average modulation spectra of the 50th, 250th, and 

450th dimensions (frequency bins) of the sequences of 

STRAIGHT spectral envelopes for 43 natural target speech 

utterances and the corresponding converted spectral envelopes 

by GMM and GMM-SDC, respectively. From Figure 2, we 

observe that the MSs of the 250th and 450th dimensions (i.e., 

the higher frequency bins) of the converted spectral envelopes 

by GMM-SDC are closer to the MSs of the natural target 

speech. On the other hand, the MSs of the 50th dimension (i.e., 

the lower frequency bin) of the converted spectral envelopes 

obtained by GMM and GMM-SDC are similar and far apart 

from the MS of the natural target speech. This result implies 

that introducing the spectral detail compensation method to 

the baseline GMM-based SC system can effectively enhance 

the MSs of higher frequency bins. Figure 3 shows the 
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STRAIGHT spectrograms of a natural target speech and the 

converted speeches by GMM and GMM-SDC. From the 

figure, we observe that more spectral details are revealed in 

the converted speech by GMM-SDC, particularly in the higher 

frequency bins (4~8kHz). 

3.3. Subjective evaluations 

For the subjective evaluation, we randomly selected two 

conversion pairs from each category (including f-f, m-m, m-f, 

and f-m; m: male, f: female), resulting in eight conversion 

pairs. For each pair, eight sentences were randomly selected 

from the test set, thereby resulting in 64 (8x8) test sentences. 

Ten Chinese-native listeners were recruited to conduct the 

naturalness and speaker similarity tests.  

First, we conducted a preference test to evaluate the 

naturalness of the converted speech. Specifically, each pair of 

converted speeches by systems A and B were presented in a 

random order to the listeners. The listeners were asked to 

judge which sample sounded more natural. Table 1 shows the 

overall average results of the preference test. We can see that 

GMM-SDC yields remarkable gains over the baseline GMM 

system in terms of naturalness. The result is consistent with 

those of the objective tests in Figures 2 and 3.  

Next, we conducted an ABX test for each system 

independently to evaluate the speaker similarity performance. 

The natural source and target speeches were presented to the 

listeners in a random order as A and B, and the corresponding 

converted speech was presented as X. The same sentence was 

used for A and B, and a different one was used for X to 

prevent the listeners from evaluating only a specific prosodic 

pattern of each utterance [5]. Listeners were asked to judge 

whether utterance X sounded like utterance A or B. Note that 

we only reported the results of intra-gender conversion since 

all the inter-gender conversion pairs were identified correctly 

in our preliminary result. Similar results have also been 

reported in [11]. The third row of Table 1 shows the overall 

average results of the ABX test. We note that there are no 

significant differences between GMM and GMM-SDC in 

terms of similarity. The results of both objective and 

subjective tests confirmed that the proposed spectral detail 

compensation method could effectively reintroduce the 

spectral details to the converted spectral envelopes obtained 

by a GMM-based SC system, thereby obtaining better 

naturalness while maintaining speaker similarity. 

4. Conclusions 

In this paper, we have proposed an exemplar-based spectral 

detail compensation method for improving spectral conversion 

methods operating on low-dimensional spectral features. The 

key idea of the proposed method is to compensate the loss of 

spectral details in the (STRAIGHT) spectral envelopes 

reconstructed from the converted low-dimensional spectral 

features. The GMM-based SC (using MCCs) method was 

adopted as a case study. Experimental results revealed that the 

proposed method could effectively reintroduce the spectral 

details to the converted spectral envelopes obtained by the 

GMM-based SC method, thus resulting in notably better 

naturalness. It is expected that the proposed method may 

improve any SC methods operating on low-dimensional 

spectral features using the STRAIGHT vocoder. 
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Figure 2: Average MSs of the 50th(left), 250th(middle), and 450th(right) dimensions of STRAIGHT spectral envelopes of natural 

target speech and the converted speech by GMM and GMM-SDC. 

 
Figure 3: STRAIGHT spectrograms of a natural target speech (left) and the converted speeches by GMM (middle) and GMM-

SDC (right). 

 
Table 1: Test results (%) of naturalness and 

speaker similarity. P is the P-value of the t-test  

 GMM  GMM-SDC p 

Naturalness 20.78  79.22 0.000 

Similarity 86.88  87.81 0.975 
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