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Abstract

The advances in Automatic Speaker Verification (ASV) system
for voice biometric purpose comes with the danger of spoof-
ing attacks. The replay attack is the most accessible attack,
where the attacker imitates speaker’s identity by replaying the
pre-recorded speech samples of the target speaker. Most of the
conventional features, such as Mel Frequency Cepstral Coeffi-
cients (MFCC), Instantaneous Frequency Cepstral Coefficients
(IFCC), etc. uses filterbank structure for feature extraction pur-
pose. In this paper, we propose a novel Empirical Mode De-
composition Cepstral Coefficient (EMDCC) feature set, where
the filterbank in MFCC is replaced with the Empirical Mode
Decomposition (EMD) to obtain the subband signals. The pro-
posed feature set takes an advantage of using EMD that acts as a
dyadic filterbank and handles the nonlinear and non-stationary
nature of the speech signal. The stand-alone EMDCC feature
set gives the Equal Error Rate (EER) of 28.06 % compared to
the baseline CQCC and MFCC system with EER of 29.18 %
and 31.3 %, respectively on the evaluation set of ASV Spoof
2017 Challenge database. Furthermore, the proposed feature
set is fused with the Linear Frequency Modified Group Delay
Cepstral Coefficient (LFMGDCC) at score-level and we obtain
areduced EER of 18.36 % on evaluation set.

Index Terms: replay, spoofing, empirical mode decomposition,
dyadic filterbank, residual.

1. Introduction

In the past few years, there has been noteworthy hike in the
use of Automatic Speaker Verification (ASV) system for nu-
merous applications, such as security, telephone banking etc.
[1]. In practice, the ASV system should be robust across vari-
ous variabilities, such as speaker aging, microphone, transmis-
sion channel etc. Nullifying the effects of variabilities of these
components makes the ASV system robust, however, it comes
with the disadvantage of making the ASV system vulnerable to
spoofing attacks. Hence, it is necessary to make the ASV sys-
tem secure against spoofing attacks. The various kinds of spoof-
ing attack include impersonation [2], Voice Conversion (VC)
[3], Speech Synthesis (SS) [4] and replay [5]. Replay is the sim-
plest and easily accessible spoofing attack, as it does not require
any prior knowledge of specific expertise and special computer
knowledge [6]. Replay is a spoofing attack, where the attacker
tries to fool ASV system using a pre-recorded speech samples
of the target genuine speaker [6].

The replay speech can be mathematically model as a con-
volution of the genuine speech signal with the impulse response
of recording device, the impulse response of recording environ-
ment, the impulse response of multimedia speaker (playback
device) and impulse response of playback environment [5]. The

721

quality of recording/ playback device, and noise level in record-
ing/ playback environment decides the quality of replay speech
and hence the difficulty of replay spoof detection. The replay
speech recorded with a high quality recording and playback de-
vice in clean recording environment is very difficult to detect as
it is very much similar to the genuine speech.

One of the initial study in replay detection for text-
dependent ASV used score normalization approach and deci-
sion was made based on N-similarity scores [7]. The chan-
nel noise from recording device was used to detect the replay
speech [8]. The replay speech obtained through far-field record-
ing using land line and GSM telephone channel using mod-
ulation index and spectral ratio was studied in [9] for text-
dependent ASV system and in [10] for text-independent ASV
system. Recently the second ASV spoof 2017 challenge is or-
ganized to develop a countermeasure to prevent replay attack
under unseen conditions [11]. The high frequency gets highly
affected and hence most of the cues for replay spoof detection
can be found in the high frequency region [12]. Instantaneous
Frequency (IF)-based approach was studied in [13]. Single
Frequency Filtering (SFF) approach was used to capture chan-
nel information present along with generative and discrimina-
tive model using Gaussian Mixture Model (GMM) and Bidi-
rectional Long Short Term Memory (BLSTM) classifier at the
back end [14]. The source-based features, namely, Epoch Fea-
ture (EF) and Peak to Side lobe Ratio Mean and Skew (PSRMS)
were used in [15]. The score-level fusion of these feature with
IFCC, Mel Frequency Cepstral Coefficients (MFCC) and Con-
stant Q Cepstral Coefficients (CQCC) was carried out to cap-
ture complementary information. To detect known and un-
known replay audio, effective ensemble learning classifier was
proposed along with various acoustic features in [16]. Vari-
ous neural network-based countermeasures were developed in
[17,18, 19, 20].

Several conventional features, such as MFCC, LFCC,
IFCC, etc. uses filterbank structure to obtain the subband fil-
tered signal for processing. This filterbank is fixed for all the
utterances in feature extraction process. In addition, these fea-
ture extraction methods assume that the input speech signal is
a stationary signal and produced by linear system. The Empiri-
cal Mode Decomposition (EMD) were first used for non linear
and non-stationary time-series analysis [21]. The EMD decom-
poses signal into special Intrinsic Mode Functions (IMFs), as-
suming that the input signal is produced by non linear system
and is non-stationary in nature. In addition, all the events are
handled as they arise. Flandrin et. al. reported that the EMD
acts as a dyadic filterbank and decomposes input signal simi-
lar to wavelet-like decomposition [22]. In this paper, we pro-
pose a new feature extraction approach in which the filterbank
is replaced with EMD to capture all the advantages of EMD.
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We refer to this feature set as Empirical Mode Decomposition
Cepstral Coefficients (EMDCC). The experimental results are
compared with MFCC [23] and CQCC [24] results. Further-
more, the EMDCC feature set is fused with the LFMGDCC at
score-level to capture possible complementary information.

2. Empirical Mode Decomposition (EMD)

The EMD deals with the signals that are produced by non lin-
ear system and non-stationary in nature and the events are han-
dled as the signal occur [25]. EMD decomposes a signal into
zero mean Amplitude Modulation and Frequency Modulation
(AM-FM) waveforms. These AM-FM waveforms are known
as Intrinsic Mode Functions (IMFs), and aims to represent un-
derlying intra-wave modulated components in the signal. The
locally zero mean condition is assured by maintaining mean of
the lower and upper envelope (obtained by interpolating min-
imas and maximas) of an IMF equal to zero [21, 26]. For a
given signal s(n), it can be decomposed into two part, one is
high-frequency (local) part also known as detail, d(n) and the
other part is low-frequency (local) part known as trend, m(n)
[22].

s(n) = d(n) + m(n). (1)
To obtain the further detail and trend signal, the procedure of
decomposing signal into detail and trend, iteratively applied
on residual term considering as a new signal. For given signal
s(n), the IMFs can be found as follows [21]:

1. Identify all the relative minima and maxima of the signal.

2. Interpolate maxima (and minima) to get upper envelope
eup(n) (and lower envelope €jou (12)).

3. The mean of upper and lower envelope is computed as,

€up(n) + et ()

5 @

Menv (n) =
4. To get rid of overriding wave, the mean signal men. (1)
is subtracted from the original signal s(n).

3

Due to small humps present in speech signal and which
are not identified as minima or maxima in the first step,
x1(n) cannot be said as IMF. Hence, to get the actual
IMF the process continued iteratively, considering z1 (n)
as new signal, sifting process is continued to obtained
z11(n). The following series is called z1;(n). The pro-
cedure is repeated till the following condition is meet by
the residue:

z1(n) = s(n) — Meno(n).

<0.2. @)

N
>y [\901(1—1)(”) —z15(n)[*
(z1(j-1)(n))?
Assuming dq(n) = hi, satisfies condition in Eq. (4),
d1(n) is called as first IMF.
5. Subtract the IMF d; (n) from the actual signal s(n),

n=0

mi(n) = s(n) — di(n). ®)

6. Considering this m1(n) as a new signal, the entire pro-
cess (step 1- step 5) is repeated to obtain other IMFs. For
stoping either of the following two conditions should be
satisfied.

* The signal does not contain any minima and max-
ima i.e., signal becomes void or monotonic.
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* The signal level becomes negligible such that it
can be neglected for further processing.

Finally, for a given signal s(n), having I number of IMFs the
EMD can be represented as,

sn) = ma() + 3 dsfr), ©)

where my(n) represents residual term and d;(n), (i =
1,2,....,1 — 1) represents zero mean AM-FM waveforms
(IMFs/modes).

Figure 1 shows the IMFs obtained for the voiced frame of
the speech signal. The first IMF obtained is high frequency
signal indicating the filter for IMF: 1 or mode: 1 is high pass in
nature, while the other filters associated with another IMFs or
modes are bandpass in nature [22]. The narrowband condition
for decomposed signals can be assured by maintaining number
of zero crossings of components to be either same or differ by
at most one with number of minima and maxima.
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Figure 1: (a) Voiced frame of speech signal, (b-g) IMF': 1-6 and
(h) IMF: 7 or trend.

The EMD behaves as a dyadic filterbank and decomposes
signal similar to the wavelet like decomposition for fractional
Gaussian noise [22] and for white noise [27]. From the pro-
cess of EMD, each IMF is zero mean AM-FM waveform whose
number of zero crossings is equal or differ by at most one with
its number of extremas. The number of zero crossings can be
roughly interpreted as mean frequency of each IMF. Empirical
results shows that the number of zero crossing resemble to loga
scale and shows equivalent structure of filterbank with log scale
[22].

Figure 2(a) shows the spectrogram of first 11 IMFs ob-
tained by EMD decomposition and Figure 2(b) shows the spec-
trogram of first 11 subbands obtained by passing speech signal
through mel triangular filterbank of 11 filters. From Figure 2,
it is observed that the IMF spectrogram is very much similar to
spectrogram of subband obtained through filterbank, however,
EMD gives the very good resolution at the lower frequencies
and poor resolution at high frequencies compared to filterbank
(due to logs scale). Tt is also observed that EMD behaves as a
very sharp filter blocking for most of the frequencies outside the
range of IMF frequencies compared to filterbank, which passes
other frequencies with less attenuation.

3. Feature Extraction
3.1. Proposed EMDCC Feature

Figure 3 shows the functional block diagram to extract the pro-
posed EMDCC feature set. The input speech signal is first de-
composed into I zero-mean AM-FM waveforms (IMFs). Each
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Figure 2: Spectrogram of first 11 IMFs/subbands obtained through (a) EMD decomposition and (b) Mel triangular filterbank.

IMF is then segmented with 20 ms duration with 50 % overlap.
Further, the energy in each frame x(n) is computed for every

IMF as follows:
M—1

E=)l|e(m)?

where M is the length of frame (320 samples) and E repre-
sents energy in frame x(n). To approximate the non linear rela-
tion between auditory-nerve firing rate and signal intensity, log
function is applied on the computed energies. This nonlinear-
ity provides remarkable robustness by suppressing small signal
variability and also mimics the human perception of loudness

@)

[26, 28].
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Figure 3: Functional block diagram to extract proposed

EMDCC feature set.

The Discrete Cosine Transform (DCT) is used to exploit
the redundancy and to obtain the cepstral coefficients. First few
cepstral coefficients are retained and in order to capture the dy-
namic nature of the speech signal they are appended with their
first and second order derivatives to obtain high dimensional
feature vector.

3.2. Linear Frequency Modified Group Delay Cepstral Co-
efficients (LFMGDCC)

The phase spectrum need complex unwrapping algorithm be-
fore processing, hence the use of phase spectrum in speech ap-
plications has been ignored for several years. In this paper, to
capture the phase information LFMGDCC feature set is used
with EMDCC feature set. The Group Delay (GD) function
which is defined as negative frequency derivative of phase func-
tion, has same properties as the phase function [29]. Speech
signal is a output of a stable system, hence only zeros (due to
noise or analysis window) are very close to unit circle. These
zeros causes the GD function to be spiky in nature. The Modi-
fied Group Delay (MGD) function, proposed in [30] suppresses
these zeros. The GD function G(w) for speech frame s(n) can
be computed as [31]:

5 (@)Qu(w) + Si(w)Qu(w)
Glw) = EOE ’

where S(w) and Q(w) represents Fourier Transform (FT) of
s(n) and ns(n) respectively (suffix r and ¢ indicates real and

®)
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imaginary part respectively). To suppress the zeros close to unit
circle, the denominator term is replaced by cepstrally smoothed
spectra (R(w)) of S(w).

_ 5 (w)@Qr(w) + Si(w)Qi(w)

= L
_ Gw) ¥

where G, (w) represents MGD function. The parameters p
and ~ decides the reduction level in amplitude of spikes and
restores the dynamic range in GD function and needs to be
tuned as per application. To use this MGD fuction for replay
spoof detection, the cepstral coefficients are computed similar
to Mel Frequency Modified Group Delay Cepstral Coefficients
(MFMGDCC) [32] except that the Mel scale is replaced with
linear scale. We refer to this feature set as LFMGDCC. The ex-
traction of LFMGDCC start with computing MGD values and
passing them through linear triangular filterbank. The energy
in each filter of the filterbank is computed, and to decorrelate
the signal DCT is applied [33]. First few coefficients are re-
tained and are appended with A and AA coefficients to capture
dynamic information.

4. Experimental Setup and Results
4.1. Database

All the experiments are performed on ASV spoof 2017 chal-
lenge database. The database is based on the text-dependent
RedDots corpus and its replayed version. All the speech signals
have sampling frequency of 16 kHz and 16 bit per sample preci-
sion. The database contains three subsets, namely, training, de-
velopment and evaluation set. The details of database are given
in [11]. The GMM classifier is used to classify between genuine
and replay speech. Two GMMs are trained for genuine and re-
play speech using training set of ASV Spoof 2017 Challenge
database.

4.2. EMDCC

The cubic spline interpolation is used to interpolate maxima and
minima to obtain upper and lower envelope. The first 10 IMFs
obtained from EMD are used for the feature extraction. The 10
IMFs are segmented into short frame of duration 20 ms with 50
% overlap. The 10 static coefficients are appended with A and
AA coefficients, resulting in 30-dimensional (D) feature vector.
The GMM classifier with 512 Gaussian components is used.
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Figure 4: DET curves for (a) development and (b) evaluation set.

4.3. LFMGDCC

The parameter p and -y are set to 0.4 and 0.1 respectively for
computing MGD function. The 13-D static LFMGDCCs along
with A and AA coefficients are used to get 39-D feature vector.
The feature were extracted using 40 linearly scaled triangular
filters along with the Hamming window of 25 ms duration and
10 ms shift. The GMM classifier with 512 Gaussian compo-
nents is used.

4.4. Results

The results of our proposed feature set along with other feature
sets are shown in Table 1. We have compared our proposed
feature set with CQCC (baseline system) and MFCC feature
set.

Table 1: Results on development and evaluation data set

Feature EER (%)
Set Development  Evaluation
CQCC (Baseline) 12.11 29.18
MFCC 12.21 31.3
LFMGDCC 19.26 2291
EMDCC 28.48 28.06
EMDCC+LFMGDCC 12.42 18.36

‘+’ indicates the score-level fusion.

The CQCC-GMM system is a baseline system provided
by the organizers of the ASV Spoof 2017 Challenge, having
EER of 29.18 % on evaluation set. The MFCC-GMM and
LFEMGDCC-GMM systems gives an EER of 31.3 % and 22.91
% on evaluation set. The EMDCC gives result of 28.06 % com-
pared to MFCC system on evaluation set giving improvement
of 3.24 %. Further, EMDCC feature set is fused with phase-
based LEFMGDCC feature at score-level giving reduced EER of
12.42 % and 18.36 % on development and evaluation set respec-
tively, indicating that the feature sets captures complementary
information. Figure 4 shows the DET curves [34] for the de-
velopment and evaluation set of the ASV spoof 2017 challenge

724

database. From DET plots, it is clear that score-level fusion
of EMDCC and LFMGDCC gives better performance over en-
tire operating region of DET curve. The authors also performed
experiments with power law nonlinearity, where the exponent
value — 3—10 gave best results. Using power law nonlinearity, the
EER of 28.99 % and 27.87 % on development and evaluation
set of ASV spoof 2017 challenge database respectively is ob-
tained. However, It is observed that log nonlinearity captures
better complementary information compared to power law non-
linearity.

5. Summary and Conclusions

In this paper, we proposed novel EMDCC feature for replay
spoof detection task. The EMD decomposes a signal into IMFs
assuming that the signal is produced by non linear system and is
non-stationary in nature. In addition, EMD act as dyadic filter-
bank. The proposed feature set uses EMD to decompose speech
signal into subbands and uses log nonlinearity to approximate
non linear relation between auditory nerve firing rate and signal
intensity. Further, this feature set is fused with phase-based fea-
ture LFMGDCC at score-level, to capture complementary infor-
mation. We also observed the individual EMDCC system per-
formance for power law nonlinearity is better, however log non-
linearity capture better complementary information. The results
of the final fused system are compared with baseline CQCC and
MEFCC system. The EMDCC-GMM system performs relatively
better than baseline CQCC-GMM and MFCC-GMM system. In
future, neural network-based classifiers can be used to improve
the performance of spoof detection system. In addition, replay
spoof detection system can be implemented using channel noise
estimated by EMD.

6. Acknowledgement
The authors would like to thank Mr. Ankur Patil and Mr. Srini-
vas Kantheti for their valuable suggestions. The authors would
also like to thank authorities of DA-IICT, Gandhinagar to carry
out this research work.



[1]

[2]

[3]

[4]

[5]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

7. References

Z. Wu, N. Evans, T. Kinnunen, J. Yamagishi, F. Alegre, and H. Li,
“Spoofing and countermeasures for speaker verification: A sur-
vey,” Speech Communication, vol. 66, pp. 130-153, 2015.

Y. W. Lau, M. Wagner, and D. Tran, “Vulnerability of speaker ver-
ification to voice mimicking,” in IEEE International Symposium
on Intelligent Multimedia, Video and Speech Processing, 2004,
pp. 145-148.

Y. Stylianou, “Voice transformation: A survey,” in IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2009, pp. 3585-3588.

H. Zen, K. Tokuda, and A. W. Black, “Statistical parametric
speech synthesis,” Speech Communication, vol. 51, no. 11, pp.
1039-1064, 2009.

F. Alegre, A. Janicki, and N. Evans, “Re-assessing the threat of
replay spoofing attacks against automatic speaker verification,” in
IEEE International Conference of the Biometrics Special Interest
Group (BIOSIG), Darmstadt, Germany, 2014, pp. 1-6.

Z. Wu, S. Gao, E. S. Cling, and H. Li, “A study on replay at-
tack and anti-spoofing for text-dependent speaker verification,”
in [EEE Annual Summit and Conference in Asia-Pacific Signal
and Information Processing Association, (APSIPA), Chiang Mai,
Thailand, 2014, pp. 1-5.

W. Shang and M. Stevenson, “Score normalization in playback
attack detection,” in IEEE International Conference on Acoustics
Speech and Signal Processing (ICASSP), Dallas, USA, 2010, pp.
1678-1681.

Z.-F. Wang, G. Wei, and Q.-H. He, “Channel pattern noise based
playback attack detection algorithm for speaker recognition,” in
IEEE International Conference on Machine Learning and Cyber-
netics (ICMLC), vol. 4, 2011, pp. 1708-1713.

J. Villalba and E. Lleida, “Detecting replay attacks from far-field
recordings on speaker verification systems,” Biometrics and ID
Management, Brandenburg, Germany, pp. 274-285, 2011.

J. Villalba and Lleida, “Preventing replay attacks on speaker veri-
fication systems,” in IEEE International Carnahan Conference on
Security Technology (ICCST), Barcelona, Spain, 2011, pp. 1-8.

T. Kinnunen, M. Sahidullah, H. Delgado, M. Todisco, N. Evans,
J. Yamagishi, and K. A. Lee, “The ASV spoof 2017 Challenge:
Assessing the limits of replay spoofing attack detection,” in IN-
TERSPEECH, Stockholm, Sweden, 2017, pp. 2-6.

M. Witkowski, S. Kacprzak, P. elasko, K. Kowalczyk, and
J. Gaka, “Audio replay attack detection using high-frequency fea-
tures,” in INTERSPEECH, Stockholm, Sweden, 2017, pp. 27-31.

H. A. Patil, M. R. Kamble, T. B. Patel, and M. H. Soni, “Novel
variable length Teager energy separation based instantaneous fre-
quency features for replay detection,” in INTERSPEECH, Stock-
holm, Sweden, 2017, pp. 12-16.

K. R. Alluri, S. Achanta, S. R. Kadiri, S. V. Gangashetty, and
A. K. Vuppala, “SFF anti-spoofer: IIIT-H submission for auto-
matic speaker verification spoofing and countermeasures Chal-
lenge 2017, in INTERSPEECH, Stockholm, Sweden, 2017, pp.
107-111.

S.Jelil, R. K. Das, S. M. Prasanna, and R. Sinha, “Spoof detection
using source, instantaneous frequency and cepstral features,” in
INTERSPEECH, Stockholm, Sweden, 2017, pp. 22-26.

Z.Ji,Z.-Y. Li, P.Li, M. An, S. Gao, D. Wu, and F. Zhao, “Ensem-
ble learning for countermeasure of audio replay spoofing attack in
ASVspoof 2017,” in INTERSPEECH, Stockholm, Sweden, 2017,
pp. 87-91.

G. Lavrentyeva, S. Novoselov, E. Malykh, A. Kozlov, O. Kuda-
shev, and V. Shchemelinin, “Audio replay attack detection with
deep learning frameworks,” in INTERSPEECH, Stockholm, Swe-
den, 2017, pp. 82-86.

W. Cai, D. Cai, W. Liu, G. Li, and M. Li, “Countermeasures for
automatic speaker verification replay spoofing attack : On data

augmentation, feature representation, classification and fusion,”
in INTERSPEECH, Stockholm, Sweden, 2017, pp. 17-21.

725

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

Z. Chen, Z. Xie, W. Zhang, and X. Xu, “ResNet and model fusion
for automatic spoofing detection,” in INTERSPEECH, Stockholm,
Sweden, 2017, pp. 102-106.

P. Nagarsheth, E. Khoury, K. Patil, and M. Garland, “Replay at-
tack detection using DNN for channel discrimination,” in INTER-
SPEECH, Stockholm, Sweden, 2017, pp. 97-101.

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih,
Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empiri-
cal mode decomposition and the Hilbert spectrum for nonlinear
and non-stationary time series analysis,” in The Royal Society of
London A, vol. 454, 1998, pp. 903-995.

P. Flandrin, G. Rilling, and P. Goncalves, “Empirical mode de-
composition as a filter bank,” IEEE Signal Processing Letters,
vol. 11, no. 2, pp. 112-114, 2004.

S. B. Davis and P. Mermelstein, “Comparison of parametric rep-
resentations for monosyllabic word recognition in continuously
spoken sentences,” in Readings in Speech Recognition. Elsevier,
1990, pp. 65-74.

M. Todisco, H. Delgado, and N. Evans, “A new feature for auto-
matic speaker verification anti-spoofing: Constant Q cepstral co-
efficients,” in Speaker Odyssey Workshop, Bilbao, Spain, vol. 25,
2016, pp. 249-252.

N. E. Huang, Hilbert-Huang transform and its applications.
‘World Scientific, 2014, vol. 16.

X. Zhang, M. G. Heinz, I. C. Bruce, and L. H. Carney, “A phe-
nomenological model for the responses of auditory-nerve fibers:
I. nonlinear tuning with compression and suppression,” The Jour-
nal of the Acoustical Society of America (JASA), vol. 109, no. 2,
pp. 648-670, 2001.

Z. Wu and N. E. Huang, “A study of the characteristics of white
noise using the empirical mode decomposition method,” in The
Royal Society of London A, vol. 460, 2004, pp. 1597-1611.

J. Tchorz and B. Kollmeier, “A model of auditory perception as
front end for automatic speech recognition,” The Journal of the
Acoustical Society of America (JASA), vol. 106, no. 4, pp. 2040—
2050, 1999.

B. Yegnanarayana and H. A. Murthy, “Significance of group delay
functions in spectrum estimation,” IEEE Transactions on Signal
Processing, vol. 40, no. 9, pp. 2281-2289, 1992.

H. A. Murthy and V. Gadde, “The modified group delay func-
tion and its application to phoneme recognition,” in /EEE Inter-
national Conference on Acoustics, Speech, and Signal Processing,
(ICASSP), vol. 1, Hong Kong, China, 2003, pp. 68-71.

K. Vijayan, P. R. Reddy, and K. S. R. Murty, “Significance of
analytic phase of speech signals in speaker verification,” Speech
Communication, vol. 81, pp. 54-71, 2016.

Z. Wu, X. Xiao, E. S. Chng, and H. Li, “Synthetic speech de-
tection using temporal modulation feature,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), Vancouver, BC, Canada, 2013, pp. 7234-7238.

N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete Cosine Trans-
form,” IEEE Transactions on Computers, vol. 100, no. 1, pp. 90—
93, 1974.

A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przy-
bocki, “The DET curve in assessment of detection task perfor-
mance,” National Institute of Standards and Technology, Gaithers-
burg MD, Tech. Rep., 1997.



