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Abstract

In this paper, we present a standalone replay spoof speech detec-
tion (SSD) system to classify the natural vs. replay speech. The
replay speech spectrum is known to be affected in the higher fre-
quency range. In this context, we propose to exploit an auditory
filterbank learning using Convolutional Restricted Boltzmann
Machine (ConvRBM) with the pre-emphasized speech signals.
Temporal modulations in amplitude (AM) and frequency (FM)
are extracted from the ConvRBM subbands using the Energy
Separation Algorithm (ESA). ConvRBM-based short-time AM
and FM features are developed using cepstral processing, de-
noted as AM-ConvRBM-CC and FM-ConvRBM-CC. Proposed
temporal modulation features performed better than the base-
line Constant-Q Cepstral Coefficients (CQCC) features. On the
evaluation set, an absolute reduction of 7.48 % and 5.28 % in
Equal Error Rate (EER) is obtained using AM-ConvRBM-CC
and FM-ConvRBM-CC, respectively compared to our CQCC
baseline. The best results are achieved by combining scores
from AM and FM cues (0.82 % and 8.89 % EER for develop-
ment and evaluation set, respectively). The statistics of AM-FM
features are analyzed to understand the performance gap and
complementary information in both the features.
Index Terms: ConvRBM, amplitude and frequency modula-
tions (AM-FM), replay spoof speech detection

1. Introduction
Among all the spoofing attacks, the replay attacks (also known
as presentation attack [1]) are a major threat to the ASV sys-
tems since they can be easily performed (using playback of
recorded voice) [2]. To promote the research in development of
countermeasures for the replay Spoof Speech Detection (SSD),
ASVspoof 2017 Challenge was organized as a part of the spe-
cial session at INTERSPEECH 2017 [3]. Baseline for the Chal-
lenge was developed using Constant-Q Cepstral Coefficients
(CQCC) features using the Gaussian Mixture Model (GMM)
classifier [3], [4]. The Instantaneous Frequency (IF)-based
features were also explored in [5], [6]. The high resolution
temporal-based features known as Single Frequency Filtering
(SFF) were used in [7]. It was found that high frequency con-
tent in the spectrum is more useful for detecting the replayed
speech and thus, authors in [8] proposed High Frequency Cep-
stral Coefficients (HFCC). The high frequency-band selection
in CQCC also performed better compared to the fullband CQCC
[9]. Some of the approaches using deep learning along with fea-
ture normalization also proposed in [10–12].

Three key observations from ASVspoof 2017 Challenge are
the use of high-frequency spectral information, representation
learning, and feature normalization. The previous approaches
manually search for various spectral features or learn features

using very complex classifiers. In this paper, we propose to
use temporal modulation features obtained by combining stud-
ies from machine learning and signal processing. We have used
an auditory filterbank learning using Convolutional Restricted
Boltzmann Machine (ConvRBM) [13, 14]. Earlier, the Con-
vRBM was applied in the ASVspoof 2015 Challenge database
and found better results compared to the baseline system [15].
Here, we use ConvRBM filterbank to extract the temporal mod-
ulations in amplitude (AM) and in frequency (FM). The AM
and FM are two important physical aspects of the speech signal.
There is also an evidence of AM-FM demodulation in the audi-
tory cortex [16]. The AM-FM model of the speech describes the
dynamic changes in the envelope (AM) and carrier frequency
(FM) [17].

The objective of this paper is to use ConvRBM for audi-
tory filterbank learning and extract temporal modulation fea-
tures (AM-FM) for the replay SSD task. We propose to use pre-
emphasized speech signals to learn subband filters that repre-
sent high frequency regions more effectively. The proposed ap-
proach represents an amalgamation of filterbank learning using
ConvRBM and AM-FM features for improving performance.

2. Temporal Modulation Features
2.1. ConvRBM for Auditory Filterbank Learning

ConvRBM is a probabilistic undirected graphical model that has
two layers, the visible and hidden layer [13]. The speech sig-
nals are given as an input x to ConvRBM. In order to learn more
subband filters for representing high frequency components, we
used pre-emphasized speech signals in ConvRBM training [18].
The hidden layer is divided into K number of groups (i.e., no.
of subband filters). The Weights (Wk) are shared between vis-
ible and hidden units among all the locations in each group
(k = 1, 2, ...,K). The hidden and visible biases are also shared
denoted as bk and c, respectively. For the kth subband, the
input to the hidden layer is given as: Ik = (x ∗ W̃k) + bk,
where ∗ is a convolution operation and W̃ denote the flipped
array [13]. With a noisy leaky rectifier linear units (NLReLU),
the sampling equations for the hidden and visible units are given
as [13, 14]:

hk ∼ max(0, zk) + αl ·min(0, zk), (1)

x ∼ N
(

K∑

k=1

(hk ∗Wk) + c, 1

)
, (2)

where zk = Ik+N(0, σ(Ik)),N(0, σ(Ik)) is a Gaussian noise
with mean zero and sigmoid of Ik as a variance, and x is a re-
constructed speech signal. The αl is a parameter controlling the
slope in the negative part which is chosen to be 0.01 as sug-
gested in [19]. Compared to our earlier work in [13], [14], we
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have used noisy leaky rectifier linear units (NLReLU) proposed
in [19] to avoid the limitations of ReLU. Annealing dropout
is applied in the ConvRBM training with the annealing sched-
ule chosen in [20]. The ConvRBM training is performed using
contrastive divergence (CD) [21]. Additional details ConvRBM
training on speech signals are given in [14]. ConvRBM param-
eters are updated using Adam optimization method [22].

2.2. Temporal Modulations in Speech

The acoustic, neurophysiological and psycholinguistic analysis
of speech signals demonstrate that there exist the perceptual
units of analysis at very different time scales [23], [24]. For
subband filtered speech signal, amplitude and frequency mod-
ulations in each band are collectively known as temporal mod-
ulations. The slow temporal modulations (AM) at the coarsest
scale roughly correlate with the different syllabic segments of
an utterance. At the finest scale, the fast temporal modulations
are due to the frequency component driving the subband at its
center frequency. These modulations are also called as Tem-
poral Fine Structure (TFS) of the speech [25]. To extract the
temporal modulation features, the speech signal is converted to
the subbands using ConvRBM filterbank. The AM-FM are es-
timated using Energy Separation Algorithm (ESA) [26]. The
ESA algorithm estimates the AM and FM using the Teager
Energy Operator (TEO) applied on the subband filtered sig-
nals [27]. The discrete version of the TEO (ΨD{·}) applied on
the ith subband si[n] of the filterbank is defined as follows [26]:

ΨD{si[n]} := s2i [n]− si[n− 1]si[n+ 1]. (3)

The discrete ESA algorithm is used to extract the AM ai[n] and
FM fi[n] for the ith subband and it is given as [26]:

ai[n] ≈ 2ΨD{si[n]}√
ΨD{si[n+ 1]− si[n− 1]}

, (4)

fi[n] ≈ arcsin

(√
ΨD{si[n+ 1]− si[n− 1]}

4ΨD{si[n]}

)
. (5)

The block diagram for the short-time AM-FM feature ex-
traction is shown in Figure 1. Each ConvRBM subband sig-
nals are passed through ESA block for AM-FM demodulation.
The short-time AM-FM features are extracted using window-
ing operation with a Hamming window. The power-law non-
linearity with an exponent 1/15 is applied for dynamic range
compression. The Discrete Cosine Transform (DCT) is applied
to decorrelate the feature vectors. The feature normalization is
performed using Cepstral Mean Normalization (CMN) [28].

Figure 1: The AM-FM feature extraction using ConvRBM.

3. Experimental Setup
3.1. ASVspoof 2017 Challenge Database

The ASVspoof 2017 Challenge database is based on the Red-
Dots corpus and its replayed speech, which is text-dependent

database [29]. The spoofed data was recorded through a vari-
ety of different environments in the ongoing H2020-funded OC-
TAVE project2 [3]. The replay corpus was developed through
different replay configurations consisting of the varied playback
device, recording devices, and the loudspeakers. The statistics
of database are given in [3].

3.2. Training of ConvRBM and Feature Extraction

We trained ConvRBM on the training set of ASVspoof 2017
Challenge database. The pre-emphasis filter is applied to the
speech signals followed by the utterancewise mean-variance
normalization. The ConvRBM is trained with subband filter
length m = 128 samples (8 ms) and number of subband filters,
K = 40, 60, 80. The learning rate was empirically chosen to
be 0.001 and decayed during each epoch according to the learn-
ing rate scheduling in [22]. The moment parameters of Adam
optimization was chosen to be β1=0.5, and β2=0.999. The an-
nealing dropout probability was chosen to be 0.3 based on our
earlier experiments in the ASR [20] and environmental sound
classification [30]. After the model was trained, the features
were extracted from the speech signal as discussed in Section
2.2. The delta and double-delta features were also appended
along with the static feature vectors. The number of feature di-
mension is chosen based on the experimental results. The nota-
tions for different cepstral feature sets are, ConvRBM-CC, AM-
ConvRBM-CC, and FM-ConvRBM-CC for ConvRBM and its
corresponding AM and FM components.

3.3. Model Training and Baseline Features

We used the GMM classifier with 512 Gaussian components for
modeling the two classes, namely, natural and replay spoof. The
GMMs are trained with the training set of the database. The fi-
nal scores are represented in terms of the Log-Likelihood Ratio
(LLR). The GMM baseline systems were built with CQCC (90-
dimensional (D)) by applying the pre-emphasis on speech sig-
nals and feature normalization using CMN. Since the frequency
scale obtained after pre-emphasis training is piecewise linear,
we also compared our results with Linear Frequency Cepstral
Coefficients (LFCC) [31] (90-D). To obtain the complementary
information in AM-FM features, we also performed score-level
fusion of AM-ConvRBM-CC and FM-ConvRBM-CC. The per-
formance of system is measured using % equal error rate (EER)
and Detection Error Trade-off curve (DET).

4. Analysis of the ConvRBM Filterbank
The subband filters (ConvRBM weights) learned from the
ASVspoof 2017 Challenge training database are shown in Fig-
ure 2. We have compared the subband filters trained with pre-
emphasized speech signals (denoted as ConvRBM-PEtraining)
and without pre-emphasis. The difference between learned sub-
band filters can be clearly seen in Figure 2. The filterbank
learned without pre-emphasized speech signals contains many
irregular low frequency subband filters (Figure 2 (a)). Since pre-
emphasis increases the intensity of high frequency components,
the filterbank learned with the pre-emphasized speech contains
relatively few low frequency filters, while many filters represent
high frequency components in the spectrum (Figure 2 (b)).

A comparison of frequency scales obtained for the pre-
emphasized speech signals from the ASVspoof 2017 Challenge
database is shown in Figure 3. The frequency scale obtained
from the ConvRBM-PEtraining model is significantly different
from other auditory scales as well as ConvRBM trained with-
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Figure 2: The subband filters in temporal-domain (a) without
and (b) with pre-emphasis, respectively.

out pre-emphasized speech signals. Since the pre-emphasis per-
forms flattening of the spectrum, the frequency scale is piece-
wise linear compared to the nonlinear scale obtained without
pre-emphasis. It uses progressively more subband filters to
represent higher frequencies. For frequencies above 2 kHz,
ConvRBM-PEtraining model uses double the number of sub-
band filters (45 vs. 20) compared to the other auditory scales
and ConvRBM trained without pre-emphasized speech signals.
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Figure 3: The comparison of ConvRBM filterbank scales with
standard auditory frequency scales.

5. Experimental Results
5.1. The Effect of Pre-emphasis in Filterbank Learning

It is observed from the previous studies that the replay SSD task
requires more cepstral coefficients. Hence, we compare differ-
ent ConvRBM configurations with the 90-D feature vector (30
static+ ∆+ ∆∆) using 60 subband filters. The 90-D was chosen
to compare the results with baseline 90-D CQCC features. The
ConvRBM-CC obtained from the pre-emphasized filterbank re-
sulted in an improved performance compared to the ConvRBM-
CC feature set without a pre-emphasized filterbank learning.
Using proposed approach, there is a relative improvement of
10.85 % and 2.98 % in EER compared to ConvRBM-CC (with-
out preemphasis) and CQCC, respectively. The ConvRBM-CC
did not perform well with 40 and 80 subband filters. The vari-
ance normalization (CMVN) also did not help to reduce EER.
Hence, our proposed idea of using pre-emphasized speech sig-
nals along with CMN performed better. We used this approach
for rest of the experiments, however, the number of subband
filters and feature dimension were chosen based on the perfor-
mance in the SSD task.

5.2. Results using Temporal Modulation Features

The results of replay SSD task using AM-ConvRBM-CC fea-
ture set are shown in Table 2. Based on our initial experiments,
AM-ConvRBM-CC required ∆ and ∆∆ along with static fea-
tures. We then try to see the effect of feature dimension after

Table 1: The effect of pre-emphasis and feature normalization
on CQCC and ConvRBM-CC on the dev set (in % EER)

Feature Set Filters Pre-emphasis Normalization Dev

CQCC - No No 10.35
CQCC - Yes CMN 9.06
ConvRBM-CC 60 No No 12.39
ConvRBM-CC 60 No CMN 9.86
ConvRBM-CC 60 Yes CMN 8.79
ConvRBM-CC 40 Yes CMN 11.93
ConvRBM-CC 80 Yes CMN 9.80
ConvRBM-CC 60 Yes CMVN 13.94

DCT for ConvRBM with 60 subband filters. AM-ConvRBM-
CC performed well with an EER of 2.65 % on dev and 12.76
% on eval set using 120-D features (i.e., 40 static+∆+ ∆∆).
Increasing the number of filters did not help to reduce EER.
We also changed the nonlinearity from power-law 1/15 to 1/3
and logarithm. However, the power-law nonlinearity with ex-
ponent 1/15 performed well. Here, larger exponents and log-
arithm may suppress the noise characteristics (as observed in
[32]) that is actually required to distinguish natural and replayed
speech. Hence, the power-law nonlinearity with exponent 1/15
performed well compared to 1/3 and logarithm.

Table 2: The experimental results using AM-ConvRBM-CC on
the dev and eval set in % EER

Filters Nonlinearity Dim Dev Eval

60 1/15 90 3.87 15.54
60 1/15 120 2.92 12.76
60 1/15 160 2.65 14.01
60 1/15 180 2.97 19.05
60 1/15 120 3.93 17.10
80 1/15 120 3.10 16.88
60 Log 120 1.74 18.15
60 1/3 120 4.23 24.93

The results of using FM-ConvRBM-CC feature set are
shown in Table 3. Experiments on the dev set suggests that
more subband filters are required for better performance with
FM-ConvRBM-CC. With 80 subband filters, FM-ConvRBM-
CC performed well on dev set compared to 60 filters. We also
explore only using static (S), ∆, and S+∆ features. Without us-
ing ∆∆, FM-ConvRBM-CC with S+∆ features reduce EER
to 5.44 % on dev set and 14.96 on eval set similar to AM-
ConvRBM-CC. In FM-ConvRBM-CC also power-law nonlin-
earity 1/15 performed well compared to 1/3 and logarithm.
The AM-ConvRBM-CC give lowest % EER compared to FM-
ConvRBM-CC on both the dev and eval sets.

5.3. Baseline Comparison and Score-Level Combination

The comparison of proposed features with the baseline features
is reported in Table 4. The ConvRBM-CC (without AM-FM
demodulation) performed better than CQCC and LFCC, specif-
ically on eval set. The AM-ConvRBM-CC significantly reduce
EER (compared to ConvRBM-CC) with an absolute reduction
of 5.87 % and 2.1 % on the dev and eval sets, respectively. The
FM-ConvRBM-CC reduce EER only on dev set with an abso-
lute reduction of 3.35 % compared to ConvRBM-CC. Interest-
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Table 3: The experimental results using FM-ConvRBM-CC in
% EER on the development set

Filters Nonlinearity Type Dim Dev Eval

60 1/15 S+∆+∆∆ 180 10.45 -
60 1/15 S+∆ 120 7.03 -
80 1/15 S+∆+∆∆ 240 5.74 15.47
80 1/15 S 80 5.63 18.90
80 1/15 ∆ 80 6.02 18.44
80 1/15 S+∆ 160 5.44 14.96
80 Log S+∆ 160 5.50 15.10
80 1/3 S+∆ 160 6.47 15.79

S=static, ∆=delta, and ∆∆=double-delta features

ingly, the score-level combination of AM-ConvRBM-CC and
FM-ConvRBM-CC (S1⊕S2 in Table 4) achieves the best per-
formance in this study. The S1⊕S2 drop the EER to 0.82 %
on dev set and 8.89 % on the eval set. Hence, AM-ConvRBM-
CC and FM-ConvRBM-CC contains remarkable complemen-
tary information that resulted in the better performance.

The DET curves of all the feature sets along with the score
fusion S1⊕S2 is shown in Figure 4. From the dev set, it is
observed that AM-ConvRBM-CC has lower False Acceptance
Rate (FAR) , (i.e., % false alarm probability) while higher False
Rejection Rate (FRR), (i.e., % miss probability). The FM-
ConvRBM-CC shows reverse characteristics, i.e., higher FAR
and lower FRR. However, DET curve for eval set shows op-
posite trend compared to DET curve on the dev set. Hence,
score combination of AM-ConvRBM-CC and FM-ConvRBM-
CC shows the significant reduction in EER.

Table 4: The comparison of various feature sets

Feature Set Dev Eval

CQCC 9.06 20.24
LFCC 10.28 16.62
ConvRBM-CC 8.79 14.86
S1: AM-ConvRBM-CC 2.92 12.76
S2: FM-ConvRBM-CC 5.44 14.96
S1⊕S2 0.82 8.89
⊕ indicates score-level fusion
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Figure 4: The DET curves for (a) dev set and (b) eval set.

5.4. Analysis of AM-FM Statistics

To investigate the performance gap in AM-FM features and how
their fusion scores improve the performance, we analyzed the
statistics of AM and FM subband features (without DCT) ob-
tained for the natural and replay speech signals from the training

set. Inspired from the study in [33], we calculated ensemble av-
erages of mean and standard deviations of AM and FM features.
The mean and standard deviation of AM (µAM , σAM ) and FM
(µFM , σFM ) features are calculated across time for each sub-
band. The ensemble average of mean and standard deviations
is calculated for all the utterances in both class and shown in
Figure 5. It can be observed that µAM for natural and replay
class are different in most of the subbands. The difference is
due to the fact that AM features are significantly affected by the
background noise, recording, replay device channel mismatch,
reverberation, etc. [34], [35]. There is less difference in µFM

for genuine and replay class (except in the last subbands) since
FM features are less affected by noise [35]. However, when we
analyzed σFM and σAM , we found that σFM also shows dis-
crimination between natural and replay class. Hence, the anal-
ysis of AM-FM statistics shows that both the AM and FM fea-
tures are affected distinctively in the replayed speech and that
might be resulted in an improved performance when AM-FM
scores are combined. However, this needs further investigation
since there is also an evidence that some of the auditory neu-
rons jointly analyze the AM-FM signals instead of separating
AM and FM via demodulation technique [17].
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Figure 5: Analysis of (a)-(b) AM and (c)-(d) FM statistics for
natural (solid line) and replay speech (dot-dashed line).

6. Summary and Conclusions
We presented the use of temporal modulation features extracted
from the ConvRBM auditory filterbank learning. The Con-
vRBM was trained using pre-emphasized speech signals to
learn filters that represent high frequency information much bet-
ter way. The AM-FM features were extracted from ConvRBM
filterbank using ESA algorithm. Both the AM-ConvRBM-CC
and FM-ConvRBM-CC performed well than the baseline fea-
tures. The score combination of AM-FM features significantly
improved the performance. The statistics of AM-FM features
were also analyzed to investigate characteristics of AM-FM fea-
tures from natural and replay speech and their performance gap.
Future works includes using deep learning classifiers and inves-
tigation of all the statistics (as suggested in [33]) of AM-FM
features.
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