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Abstract
Deep learning-based speech separation has been widely studied
in recent years. Most of these kind approaches focus on
recovering the magnitude spectrum of the target speech, but
ignore the phase estimation. Recently, a method called shifted
real spectrum (SRS) is proposed. Unlike the short-time Fourier
transform (STFT), the SRS contains only real components
which encode the phase information. In this paper, we propose
several SRS-based masks and use them as the training target
of deep neural networks. Experimental results show that
the proposed target outperforms the commonly used masks
computed on STFT in general.
Index Terms: shifted real spectrum, deep neural networks,
training targets, speech separation

1. Introduction
Many speech applications, such as robust automatic speech
recognition (ASR) and voice communication, need to acquire
speech signals for further processing, but the signal of interest
may be corrupted by additive background noise sometimes. To
fight against the noise, speech separation aims to extract the
target speech signal from a noisy speech. However, in the real
environment, the speech separation performance is far from
satisfactory, especially in the case of non-stationary noise and
monaural conditions. This study focuses on monaural speech
separation and non-stationary noise.

It is challenging that monaural speech separation uses
only a single microphone to capture speech signal, while
there are also many valuable methods have been proposed.
Speech enhancement approaches [1, 2], such as spectral
subtraction [3], estimate clean speech from noisy speech by
estimating the noise firstly. In order to estimate the noise,
speech enhancement approaches typically assume that the
noise is stationary, therefore these methods cannot deal with the
non-stationary noise. Computational auditory scene analysis
(CASA) [4] tries to simulate the processing of the human
auditory system which can solve the speech separation problem
easily. CASA uses the ideal binary mask (IBM) [5] as the
basic computational target. IBM performs well in both of the
stationary and non-stationary noise conditions. Taking the
IBM as the computational target leads the speech separation
to be formalized as a supervised learning problem which
could be solved with deep learning algorithms. Recently,
with the development of supervised methods, the speech
separation systems have achieved considerable performance
improvements [6].

A typical supervised speech separation system usually
learns a mapping function from noisy features to a training
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target with a supervised model, such as a deep neural network
(DNN). The input features have been well-studied [7].
Amplitude modulation spectrogram (AMS) [8], mel-frequency
cepstral coefficient (MFCC) [9], gammatone frequency cepstral
coefficient (GFCC) [10], perceptual linear prediction (PLP)
[11], and relative spectral transforms PLP (RASTA-PLP) [12]
are commonly used features, and a complementary feature
set included AMS, MFCC, GFCC and RASTA-PLP has been
recommended in [7] and then been applied in many studies.
The training targets have also been well-studied [13]. There are
mainly two groups of training targets: mapping-based targets
and masking-based targets. Mapping-based targets are the
spectral representations of clean speech, such as the short-time
Fourier transform (STFT) magnitude spectrum. Masking-based
targets describe the relationships between clean speech and
background interference in the time-frequency (T-F) domain,
such as the IBM, ideal ratio mask (IRM) [14], FFT-mask [13],
target binary mask (TBM) [15].

Most of these training targets only focus on the magnitude
spectrum and ignored phase spectrum, because the early studies
suggested that the phase is unimportant [16, 17], while recent
studies suggest that phase is also important for perceptual
quality [18]. Ignoring the phase will lead to degradation
in the speech separation performance. The phase-sensitive
mask (PSM) [19] and the complex ideal ratio mask (cIRM)
[20] take the phase into their consideration and show better
separation performance than the training targets without phase
information. The cIRM is a complex mask, whose elements are
complex numbers. Note that PSM is the real part of the cIRM.

In this study, we proposed a new training target with phase
information. It is mainly inspired by the shifted real spectrum
(SRS) [21] which is a spectral representation method in the
real number field instead of STFT in the complex number field.
On the basis of SRS, we proposed SRS-masks. Because SRS
is in the real number field, all of the elements of SRS-mask
are real numbers. Following the definition of cIRM and IRM,
we define two versions of the SRS-mask. One is cIRM-like
SRS-mask, called cIRMsrs. It contains the same information
as the cIRM. Therefore, as the cIRM, cIRMsrs is an optimal
mask, we can perfectly reconstruct the speech signal from the
cIRMsrs and the noisy speech. Another version is IRM-like
SRS-mask, called IRMsrs. As IRM, IRMsrs assumes the
noise and speech are independent, so that the IRMsrs varies
from 0 to 1, which makes it easy to model. Experimental results
show that using the proposed SRS-mask can achieve better
performance than the IRM which lacks of phase information,
and achieve comparable performance compared to the cIRM
and PSM which contain phase information. Further analysis
indicates the IRM-like IRMsrs is a good tradeoff between the
accuracy and modeling difficulty.
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2. Time-frequency
Representations and Masks

Given a time-domain signal x, we can decompose it into time-
frequency domain via discrete time Fourier transform (DTFT).
The result is a complex spectrum X . For a complex number, it
has a real part and an imaginary part. We denote the real part of
X asXR which contains real part of all elements. Similarly, we
denote the imaginary part ofX asXI . Thus,X = XR+j ·XI ,
where j =

√
−1, is the imaginary unit. The signal x can be

represented as (XR, XI) without loss.
The real part XR stands for a composition of a series of

cosine basis functions, which is an even function. Similarly,
XI stands for a composition of a series of sine basis functions,
which is an odd function. This means every time-domain x can
be represented in terms of its even and odd part:

x = xeven + xodd (1)

where xeven = IDTFT (XR) and xodd = IDTFT (j ·XI),
IDTFT is the inverse DTFT.

For special signal x, XR or XI can be ignored when it is a
special value or can be retrieved from the left one. For example,
if x is an even function, we have xeven = x = IDTFT (XR),
and xodd = IDTFT (j · XI) = 0. If x is an odd function,
we have xeven = IDTFT (XR) = 0, and xodd = x =
IDTFT (j ·XI).

In SRS, signal x is padded with zeros to make x(t) = 0,
when t ≤ 0, where t is the time index. As shown in Fig. 1, this
type of signal x can be decomposed into xeven and xodd, where
the xeven and xodd have the following relationship:

xeven(t) =xodd(t) =
1

2
x(t) if t > 0 (2)

xeven(t) =− xodd(t) if t ≤ 0 (3)

Because:

x(t) =xeven(t) + xodd(t) = 0 if t ≤ 0 (4)
x(t) =xeven(t) + xodd(t) if t > 0 (5)

xeven(t) = xeven(−t) and xodd(t) = −xodd(−t) (6)
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Figure 1: Zero-padded signal and its even and odd parts.

Therefore, with proper zero-padding, the signal x can be
represented asXR orXI without loss. The original signal x can
be recovered as x = 2 · IDTFT (XR) = 2 · IDTFT (j ·XI).
The zero-padding should make sure that x(t) = 0 when t ≤ 0.
It means we need to pad zeros m + 1 times at least, where m
is the signal length. To make the padded signal length even, we
pad zeros m+ 2 times as shown in Fig. 2. In summary, we get
the time-frequency representation as follows: firstly, the signal
is separated into windowed frames. Secondly, we apply DTFT
to these windowed frames. Thirdly, we take the real part (or
imaginary part) as the representation of signal. We discard the
left steps in the original paper [21].

After obtaining the time-frequency representation, we can
build up a time-frequency mask. In the STFT representation,
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Figure 2: Zero-padding.

we consider Y , N and S as the complex spectrum of the
time-domain noisy speech y, noisy n and speech s signals.
Commonly used masks included IRM, cIRM and PSM are
listed in Tab. 1. Where |x| is the modulus of x. In PSM,
θ = θS−θY , where θS and θY are the phase angle of speech S
and noisy speech Y . Take S = |S| · ej·θS and Y = |Y | · ej·θY ,
then

cIRM =
S

Y
=
|S| · ej·θS

|Y | · ej·θY =
|S|
|Y |e

j·(θS−θY ) (7)

=
|S|
|Y |

(
cos(θS − θY ) + j · sin(θS − θY )

)
(8)

Thus PSM is the real part of the cIRM.

Table 1: Mask and its Formula.

Mask Formula

IRM
√

|S|2
|S|2+|N|2

cIRM S
Y

PSM |S|
|Y |cos θ

IRMsrs

√
|Ssrs|2

|Ssrs|2+|Nsrs|2

cIRMsrs
Ssrs
Ysrs

Given the estimated time-frequency mask M̂ , we can
recover the estimated speech Ŝ by multiplying the mask with
the frequency-domain representation of the noisy speech. In the
STFT domain, Ŝ = M̂⊗Y , where⊗ denotes the element-wise
multiplication.

Following the definition of cIRM and IRM, in SRS
representations, we define two versions of SRS-mask: cIRM-
like cIRMsrs, and IRM-like IRMsrs as in Tab. 1, where Ysrs,
Nsrs and Ssrs are the SRS representations of the time-domain
noisy speech y, noise n and speech s signals. Given the
estimated time-frequency SRS-mask M̂srs, we can obtain the
estimated speech Ŝ by multiplying the mask with the SRS
representation of the noisy speech: Ŝ = M̂srs ⊗ Ysrs.

Spectrogram plots of masks, clean speech and noisy speech
are given in Fig. 4. As shown in the figures, we find the
proposed masks have a clear structure which indicates they can
be learned easily.

3. Experiments and Results
3.1. Dataset and System setup

We select 600 utterances as training utterances from the IEEE
database randomly, which consists of 720 spoken utterances by
a single male speaker. The rest of 120 utterances are selected
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as test utterances. We use five types of noise as our training
and test noise, including speech-shaped noise (SSN), babble
noise (babble), factory noise (factory), destroyerengine noise
(engine) and destroyerops noise (operating). SSN is a stationary
noise, while the other noises are non-stationary and each signal
is around 4 minutes long. The first 2 minutes of each noise are
random cut and mixed with 600 selected training utterances at
SNRs of -3, 0, 3, and 6 dB, resulting in 12000 (600 signals
× 4 SNRs × 5 noises) mixtures as training set. The last 2
minutes of each noise are random cut and mixed with 120 test
utterances at the same 4 SNRs, resulting in 2400 (120 signals
× 4 SNRs× 5 noises) mixtures as test set. The noise is divided
into two sections to ensure that the test noise is not repeated in
the training set. All utterances are downsampled to 16 kHz.
We have divided the speech signal into frames using 20 ms
hamming window with 10 ms overlap.

A complementary set of four features is provided as the
input to the DNN which contains AMS, MFCC, RASTA-PLP
and cochleagram response. These features are extracted from
a 64-channel gammatone filterbank, and their deltas are used.
After extracting features from the noisy speech, we apply mean
and variance normalization to these features. At last, auto-
regressive moving average (ARMA) [22] filters are applied on
these features. ARMA filter can smooth each feature dimension
to reduce background noise interference. ARMR has already
been used in speech separation and achieved good results
[23]. We splice the ARMA-filtered features with a five-frames
context windows (two previous and two following frames) into
an input feature vector.

DNN is used to estimate the mask. The DNN has
three hidden layers and each hidden layer has 1024 units.
Hidden units use the rectified linear unit (ReLU) as activation
function. Dropout regularization is used for network training
to prevent overfitting and dropout rate is 0.2. Adam is used for
optimization and the mean-square error (MSE) loss function
is used in the backpropagation algorithm to update the DNN
weights.

3.2. Comparison Methods

We compare the proposed training targets IRMsrs and
cIRMsrs with IRM, cIRM and PSM. We evaluated the
estimated speech from every mask with two objective metrics:
short-time objective intelligibility (STOI) score [24] and the
perceptual evaluation of speech quality (PESQ) score [25].
STOI shows an objective intelligibility between clean and
separated speech by calculating the correlation of short-time
temporal envelopes. The range of STOI is [0, 1], while the
higher score means better performance. PESQ is calculated by
comparing the separated speech with the corresponding clean
speech. The range of PESQ is [−0.5, 4.5], higher score also
means better performance.

The value range of cIRMsrs, cIRM and PSM is (−∞,∞),
which is not suitable for estimating, so we compress them with
the following hyperbolic tangent function.

Mx = K
1− e−C·mx

1 + e−C·mx
(9)

where mx is the unprocessed mask. This compression
restricted mask value to [−K,K] and C controls its steepness.
Experiment from [20] has proved thatK = 10 andC = 0.1 are
used to train the DNN. We use the following inverse function to
recover the uncompressed mask. Where Ox is the output from

the DNN.
M̂x = − 1

C
log(

K −Ox
K +Ox

) (10)

3.3. Experiment Results

Firstly, we show that we can retrieve the original signal from
the SRS representation without loss. Fig. 3 shows a signal, the
reconstruction of it via STFT and SRS and their reconstruction
errors. It can be observed that reconstruction error using both
approaches is very less (less than 15-16 orders of magnitude).
Hence, the SRS representation gives reconstruction without
loss.
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Figure 3: (a) original signal, (b) signal reconstructed using
STFT, and (c) reconstruction error. Similarly, (d) same signal,
(e) signal reconstructed using SRS, and (f) reconstruction error.

Secondly, we show the proposed ideal SRS-mask,
cIRMsrs and IRMsrs, can reconstruct the clean speech
properly. Tab. 2 lists the separation performances of different
ideal mask. It can be seen that both ideal IRMsrs and
cIRMsrs can achieve reasonable performance of clean speech
reconstruction in STOI and PESQ. The proposed SRS-mask
can improve the speech quality with the phase information.

Table 2: A example of ideal mask performances.

Mask STOI PESQ

IRM 0.95 3.42
PSM 0.95 3.62
cIRM 1.00 4.50
IRMsrs 0.95 3.53
cIRMsrs 1.00 4.50

Lastly, we show the difficulty in estimating these masks.
The separating results under different SNRs and noise types
are given in Tab. 3. Bold means the best results on one kind
of noise. Theoretically, cIRM, PSM, IRMsrs and cIRMsrs

take phase information into account, which may lead to a better
performance than IRM. As shown in Tab. 3, the masks with
phase information perform better than the IRM in general.
Compared the cIRM, cIRMsrs performs worse, although both
of them are optimal mask. Because the big mask value
in cIRMsrs is much more than cIRM, which is not easy
to be estimated. Compared the cIRM, PSM is sub-optimal
but performs better. It indicates PSM is easier to estimate.
Finally, the proposed IRMsrs obtains comparable performance
as PSM, and achieves the best scores in the terms of speech
intelligibility. It indicates that the IRMsrs can be learned
easily. IRMsrs is a good tradeoff between the accuracy and
modeling difficulty.
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Table 3: Average performance scores between different masks on -3,0,3,6 dB noisy speech.

SNR MASK PESQ STOI
babble engine operating factory SSN babble engine operating factory SSN

-3dB

Mixture 1.53 1.57 1.47 1.41 1.38 0.60 0.64 0.63 0.61 0.61
IRM 1.82 2.27 2.23 2.01 2.11 0.70 0.84 0.80 0.76 0.78

IRM-srs 1.90 2.30 2.29 2.10 2.19 0.72 0.85 0.81 0.77 0.78
cIRM 1.75 2.20 2.25 2.04 2.12 0.69 0.82 0.78 0.75 0.75

cIRM-srs 1.71 2.19 2.21 2.02 2.07 0.69 0.81 0.78 0.74 0.75
PSM 1.92 2.25 2.28 2.12 2.17 0.72 0.84 0.80 0.76 0.78

0dB

Mixture 1.72 1.68 1.68 1.57 1.54 0.67 0.71 0.69 0.67 0.67
IRM 2.15 2.52 2.50 2.31 2.40 0.80 0.88 0.85 0.83 0.82

IRM-srs 2.17 2.53 2.52 2.37 2.43 0.80 0.89 0.86 0.84 0.84
cIRM 2.13 2.47 2.49 2.35 2.42 0.78 0.87 0.85 0.82 0.83

cIRM-srs 2.06 2.45 2.48 2.32 2.38 0.78 0.87 0.84 0.82 0.82
PSM 2.18 2.53 2.53 2.37 2.40 0.80 0.88 0.85 0.83 0.84

3dB

Mixture 1.91 1.81 1.91 1.75 1.72 0.74 0.77 0.76 0.74 0.74
IRM 2.43 2.75 2.73 2.56 2.65 0.85 0.91 0.89 0.87 0.88

IRM-srs 2.46 2.78 2.76 2.61 2.68 0.86 0.92 0.89 0.88 0.89
cIRM 2.45 2.71 2.76 2.62 2.70 0.86 0.90 0.88 0.87 0.88

cIRM-srs 2.41 2.68 2.73 2.60 2.64 0.85 0.91 0.88 0.87 0.87
PSM 2.48 2.78 2.76 2.63 2.65 0.86 0.91 0.89 0.88 0.89

6dB

Mixture 2.11 1.95 2.14 1.95 1.92 0.81 0.83 0.82 0.80 0.81
IRM 2.70 2.95 2.94 2.81 2.88 0.90 0.94 0.91 0.91 0.91

IRM-srs 2.73 2.96 2.96 2.84 2.91 0.91 0.94 0.92 0.92 0.92
cIRM 2.72 2.90 2.95 2.83 2.93 0.90 0.93 0.92 0.91 0.91

cIRM-srs 2.66 2.87 2.95 2.83 2.90 0.90 0.93 0.91 0.91 0.91
PSM 2.74 2.90 2.98 2.83 2.91 0.91 0.93 0.92 0.91 0.91
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Figure 4: Spectrogram plots of clean speech,noisy speech and masks.

4. Conclusions

For supervised speech separation systems, the computational
targets have an important influence on its performance. In this
study, we proposed a new training target which based on the
SRS time-frequency representation. The proposed SRS-mask
takes the phase into consideration, and improves the speech
intelligibility and quality in the speech separation. The IRM-

like IRMsrs gives a good tradeoff between the accuracy and
modeling difficulty and may become an alternative choice of
the commonly used IRM.
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