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Abstract 

This study proposes a method of using data augmentation to 

address the problem of data shortages in miscue detection tasks. 

Three main steps were taken. First, a phoneme classifier was 

developed to acquire force-aligned data, which would be used 

for miscue classification and data augmentation. In order to 

create the phoneme classifier, phonetic features of “Seoul 

Reading Speech” (SRS) corpus were extracted by using 

grapheme-to-phoneme (G2P) to train CNN-based models. 

Second, to obtain miscue labeled corpus, we performed data 

augmentation using the phoneme classifier output, which is 

artificially generated miscue corpus of SRS (modified-SRS). 

This miscue corpus was created by randomly deleting or 

modifying sound sections according to three miscue categories; 

extension (EXT), pause (PAU), and pre-correction (PRE). 

Third, the performance of the miscue classifier was tested after 

training three types of RNN based models (LSTM, BiLSTM, 

BiGRU) with the modified-SRS corpus. The results show that 

the BiGRU model performed best at 0.819 in F1-score on 

augmented data, while BiLSTM model performed best at 0.512 

on real data.  

Index Terms: automatic miscue detection, phoneme 

classification, data augmentation, recurrent neural network 

1. Introduction 

Miscue analysis, which identifies and analyzes pronunciation 

errors while reading aloud, has long been used as an effective 

indicator for students’ reading skills [1, 2]. Despite its 

effectiveness, providing feedback on miscues takes a lot of 

resource and time. Although developing automatic miscue 

detection technology can contribute to reading fluency 

instructions, one of the main barriers in conducting the miscue 

detection task is difficulty in obtaining miscue data that can be 

used for training in a speech recognition system. To address 

such problem of data scarcity, this study proposes to use data 

augmentation to develop automatic miscue detection method.  

Data augmentation has been applied in solving the data shortage 

problem in various fields of speech recognition tasks. 

Specifically, Ko et al. [3] showed that manipulating speed of 

audio data can yield performance improvements in speech 

recognition. Hartmann et al. [4] also proposed a data 

augmentation method using noise and speed perturbation for 

languages that lack speech data, such as Amharic, Guarani, 

Igbo, Pashto. Both of these studies have shown the 

effectiveness of data augmentation by manipulating existing 

real audio data. Furthermore, attempts have also been made to 

create new artificial speech data. Alharbi et al. [5], artificially 

created sentences by combining word-pronounced audio data 

and stuttering speech data, which were manipulation of the 

original audio. Fainberg et al. [6] also proposed a data 

augmentation method for children’s speech recognition by 

modulating adult speech data. Similarly, we propose applying 

data augmentation techniques for miscue detection by creating 

artificial audio data.  

To create artificial data with miscues, we inspected existing 

literature on the different types of miscues. Unlike existing 

works on binary miscue detection task [7, 8], we need miscue 

types that occur in natural speech of reading. Since our goal is 

to classify miscue types for reading corpus at the phoneme level, 

we selected miscue types [9] that are applicable at the phoneme 

level. The three selected types are extension, pause, and pre-

correction. These miscues were chosen because they have 

salient phonetical characteristics and they are considered to be 

detectable by audio, and without reference to canonical 

pronunciation. 

Prior to creating artificial data for miscues, we examined 

previously published datasets that can be used as an input. In 

the Korean language, which is our target language, only two 

audio datasets are publicly available: “Korean Corpus of 

Spontaneous Speech” [10] and “Seoul Reading Speech” (SRS) 

Corpus [11]. These two datasets correspond to the two types of 

speech used in miscue detection tasks; spontaneous and reading 

speech. Neither of these two datasets is labeled with miscues. 

Since our target task is to detect miscues while reading, we used 

the SRS corpus for data augmentation. 

To perform miscue detection tasks using data augmentation, we 

implemented a phoneme classifier and a miscue classifier. 

Section 2 describes the convolutional neural network (CNN) 

based phoneme classifier which extracts the phonetic features 

of the acquired reading corpus, along with the data 

augmentation method. Section 3 describes proposed recurrent 

neural network (RNN) based miscue classification model. We 

end the paper with a discussion of the miscue detection task. 

2. Phoneme Classifier 

The input data for miscue classification model is speech data 

which is aligned with phonemes. Therefore, we first created a 

phoneme classifier that can provide aligned phoneme labels 

given just a speech file. Unlike existing research that detects 

miscues with miscue annotated corpus [9], our approach starts 

the miscue detection task using speech files with only 

transcriptions, but no aligned phonemes. Figure 1 shows our 

phoneme classification pipeline as well as the data 

augmentation process.  
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Figure 1: Phoneme classification pipeline and data 

augmentation process. 

To build the phoneme classification model, we applied and 

compared three types of CNN-based deep learning architecture, 

CNN-Only, CNN+bidirectional long-short term memory 

(BiLSTM) and CNN+bidirectional gated recurrent unit 

(BiGRU). The advantage of applying deep learning is that we 

can make use of features such as mel-spectrogram, which 

requires low reduction of raw data rather than features such as 

Mel-frequency cepstral coefficients (MFCC). Using less 

reduced data contributes to performance improvement in 

speech recognition tasks [13]. Therefore, we expect similar 

performance improvement in classifying phonemes compared 

to existing models based on hidden Markov model or the 

maximum entropy model that use MFCC [9, 12].  

2.1. Phoneme Classifier Dataset 

We used the Seoul Reading Speech (SRS) corpus provided by 

the National Institute of the Korean Language (NIKL) [11]. The 

SRS corpus consists of transcriptions without phoneme 

alignment and 71,216 raw speech audio files, totaling about 

180-hours in length. All Sampling rates are at 16000 Hz. The 

files were recorded by 80 people, equally distributed among the 

age range of twenties to forties. A total of nineteen different 

reading texts, each consisting of about 50 sentences were 

recorded. All audio files were recorded without noise in a 

laboratory environment. We divided the corpus into train, 

validation, and test sets at a ratio of 6: 1: 1. All the data used in 

this study were checked for correctness of transcription. During 

the checking process, we identified 151 data files which 

contained miscues. These 151 files were not used for training, 

but later used as a gold set for the miscue classification step 

described in section 3.3. 

2.2. Training of Phoneme Classifier 

For the phoneme classification task, three types of CNN-based 

models were compared. As the input for the models, we used 

Mel spectrogram with 40 Mel bandwidth. The length of the time 

window was 5ms, without any overlap between the windows.  

The three types of CNN-based classifier architectures are 

shown in Figure 2. All three architectures have three 

convolution layers, which are modified convolution networks 

of the VGG16 architecture [14, 15]. Max-pooling layers were 

added between convolution layers. Architecture (b) and (c) each 

added BiLSTM and BiGRU layers between CNN and fully-

connected (FC) layers. For all three architectures, clipped 

rectified-linear unit (clipped-ReLU) was used as an activation 

function. Equation 1 shows the definition of the ReLU function 

used.  

𝑐𝑙𝑖𝑝𝑝𝑒𝑑_𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑖𝑛{𝑚𝑎𝑥{0, 𝑥}, 20}                 (1) 

 

We trained our models with an Adam optimizer. To prevent 

overfitting, we set dropout rate as 20% for each layer to models 

and randomly added white and pink noises to audio data. Early 

stopping conditions were 15 epochs. 

 

Figure 2: VGG-based DeepCNN, DeepCNN+BiLSTM 

and DeepCNN+BiGRU model architecture 

 

The input of the three CNN-based phoneme models is a 8 x 40 

mel-spectrogram that consists of time durations by Mel-

bandwidths information.  The output of each models is a list of 

temporal labels of phonemes, which are 5ms time intervals. 

Although a common time window for phoneme classification 

task is between 10 to 20ms [18], we used a higher resolution at 

5ms since the duration of miscues can be shorter than phonemes, 

which is the target unit for our classification task. If a phoneme 

lasts for more than 5ms, a time interval in which the first 

instance of the phoneme appears, is labeled with the phoneme, 

as well as the following 5ms time intervals. For example, for 

the word “기차도”, the temporal label is, “'KK', '-', 'IY', '-', '-', 

'CH', 'CH', '-', 'AA', '-', 'T', '-', 'OW', '-', '-', '-'.” Since we are 

interested in the first occurrence of a phoneme along with the 

duration of the phoneme, we want the output to remove 

duplicates of consecutive phonemes, as shown in the following 

format, “'KK', 'IY', 'CH', 'AA', 'T', 'OW'.” To obtain this desired 

format without duplicate phonemes, we applied Connectionist 

Temporal Classification (CTC) decoding [16]. For the 

application of CTC, we used the notations where 𝐶 =
{ AA, AX, CH, EH, EY, . . . , blank} is the set of temporal phoneme 

labels, and P = { ⋯ } is the set of desired phoneme labels. For 

each feature vector 𝑐 ∈  𝐶∗  whose entry c𝑡  denotes the 

temporal label at time 𝑡, we applied CTC decoding to output the 

desired phoneme label �̂� ∈ 𝑃∗. Note that the length of �̂�, 𝑙 is 

usually less than that of c. 

2.3. Accuracy of Phoneme Classifier 

To measure the accuracy of the phoneme classifier, we 

measured the Label Error Rate (LER) between the labeled 

phonemes (𝑃𝑖) and the gold standard set. The phonemes for the 

gold standard set was obtained by applying the open-source-

based Korean grapheme-to-phoneme (G2P) [17] software to the 

original SRS transcription files. For evaluation, we computed 

LER score on the set S as follows in Equation 2. Here, let 𝑆 ⊆
𝑋 ×  𝑃∗ be the set of test examples (𝑥, 𝑝) and �̂� be the result of 

phoneme classifier. In addition, 𝐸𝐷(𝑝, 𝑞) is the edit distance 

between two sequence p and q. Edit distance is a minimum 

number of insertions, substitutions and deletions required to 

change p into q. LER using edit distance is a popular 

measurement for speech or handwriting recognition tasks. [16] 
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𝐿𝐸𝑅(𝑆) =
1

𝑆
∑

𝐸𝐷(𝑝, �̂�)

𝑙𝑒𝑛(𝑝)
                         (2) 

 

The accuracies of phoneme classification results for the three 

types of classifier architectures with corresponding LER scores 

are shown in table 1. A smaller LER score denotes a higher 

performance. The experiments on 8,800 test sets show that the 

model using only DeepCNN yields the best LER. Although, we 

cannot provide a direct comparison of accuracy between our 

results and other researchers due to the difference in the datasets, 

our numbers seem comparable to the state-of-the art 

performance. Our LER score is about 9% better than the 

existing state-of-the art performance on the Korean phoneme 

classification task, which is reported by Minsoo Na et al. (LER: 

12) [18]. 

Table 1: Phoneme classification results. DeepCNN-

BiLSTM / Deep CNN-BiGRU are measured 5 times.  

Best scores are bolded ± means standard error. 

 DeepCNN 

(VGG) 

DeepCNN-

BiLSTM 

DeepCNN-

BiGRU 

LER 32.66 7.79 ± 1.75 3.71 ± 1.68 

 

2.4. Modified-SRS Corpus using Data Augmentation 

Since miscue annotated reading data is required as an input to 

our design of the miscue classifier, we created an artificial 

miscue corpus using the SRS corpus. Artificial miscues were 

made by modifying or deleting a sound between aligned 

phonemes. Since the phonetic characteristics differ according 

to the type of miscue, we selected three miscue types and 

applied corresponding algorithms. Miscue algorithms were 

applied at the border of the aligned phonemes in the SRS corpus. 

Figure 3 shows the original waveform without any 

manipulations of miscue. The following subsections will each 

describe the applications of the three different miscue types 

used in our study. These miscues were introduced in Proença et 

al. [9, 19, 20]. 

 

Figure 3: Original waveform before manipulation 

2.4.1. EXT (Extension of a Word) 

 

Figure 4: Manipulated waveform - EXT 

 

EXT is a miscue in which one phoneme is abnormally extended 

when reading a text. Given an audio segment, we randomly 

selected one vowel from the audio segment to create EXT-like 

data. Using a phase vocoder, the selected vowel was time-

stretched. The stretched duration was determined by randomly 

selecting a number between 1 and 2, at 0.1 interval.   

2.4.2. PAU (Pause in a Word) 

 

Figure 5: Manipulated waveform - PAU 

 

PAU refers to a miscue that stops pronouncing in a very short 

period of time while reading a text. We have added a silence 

interval of 0.2 to 1.0 seconds between arbitrary phonemes to 

create a PAU dataset. Silence interval was generated by mixing 

zeros and some noise. As a result, a pattern very similar to PAU 

was produced. 

2.4.3. PRE (Pre-Correction of Pronunciation) 

 

Figure 6: Manipulated waveform - PRE 

 

PRE is a miscue in the reading process where the reader 

recognizes a mistake in pronunciation of a word, then stops 

reading the word, and starts re-reading the word. To simulate 

PRE miscue, we transformed an audio file as if pronouncing 

same syllable twice. Because the consonants were not well 

detected due to the nature of the sound, we decided to create a 

PRE, based on a vowel in which the formant was clearly formed 

and detected relatively well. The artificial miscue was 

generated by selecting the position of the vowel at random with 

force-aligned boundaries and generating the corresponding 

pronunciation again. 

3. Miscue Classifier 

To address our goal of developing a model that detects the three 

types of miscues (EXT, PAU, PRE) at the phoneme level, we 

built a miscue classifier that uses phoneme aligned speech data 

files as an input. Three types of RNN (Recurrent Neural 

Network) based miscue classifier models have been compared; 

LSTM, BiLSTM, BiGRU. Figure 7 shows the structure of our 

miscue classification model. 

To train the miscue classifier, we used artificial miscue corpus 

which is modified from the SRS corpus (modified-SRS) as 

described in section 2.4. The modified-SRS corpus was divided 

into training, validation, and test data sets with a 6: 1: 1 ratio, 

same ratio as in the training process of the phoneme classifier. 
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Figure 7:  Miscue classification model pipeline 

 

For testing the accuracy of miscue classifier, we used two types 

of data as the test sets; augmented and real. For the augmented 

data, 12.5% of modified-SRS data saved for testing was used. 

The real miscue data was obtained during the data cleaning 

process of the SRS corpus as described in section 2.1. The 

resulting real miscue data consists of a total of 151 files, 

including 9 EXTs, 67 PAUs, and 27 PREs. The amount of real 

data is about 0.002% of the training data. 

3.1. Training of Miscue Classifier 

For the training of miscue classifier, we built three miscue 

classifiers using different types of RNN models; LSTM, 

BiLSTM, and BiGRU. The input for the miscue classifiers were 

the phoneme aligned data of modified-SRS corpus. For all the 

RNN models, we set the model depth as 2 and set 512 hidden 

dimensions for each layer. We used RMSProp optimizer for the 

miscue classifier, and dropout rate was set to 20%. All three 

models were trained for 3 epochs (approximately 420 hours of 

speech data). 

When the miscue classifier detects a phoneme as a miscue, the 

classifier replaces the miscue phoneme with a corresponding 

miscue label as an output. The miscue phoneme can be assigned 

one of these following four labels; PAU, EXT, PRE and <EOS> 

(end of string). For example, let’s assume that given a temporal 

label 𝑐𝑖 = ('KK', '-', 'IY', '-', '-', 'CH', 'CH', '-', 'AA', '-', 'T', '-', 

'OW', '-', '-', '-'.) as an input, a miscue of EXT occurred at 

location c1 and c2. Therefore, the prediction value �̂�𝑖  of the 

miscue classifier is as follows; �̂�𝑖 = ('KK', 'EXT', 'EXT', '-', '-', 

'CH', 'CH', '-', 'AA', '-', 'T', '-', 'OW'). After training and building 

the miscue classification model, two types of test sets were 

examined; augmented data and real miscue data. 

3.2. Accuracy of Miscue Classifier 

To evaluate the performance of the miscue classifier, we used 

F1 scores for both augmented and real data types. Of the three 

types of RNN based models, BiGRU showed the best 

performance for augmented data, while BiLSTM showed the 

best performance for real data. Table 2 shows the F1 score of 

each model. 

Table 2: Overall F1 score overview. Best scores for 

real and augmented data are bolded. 

Model Data Precision Recall Overall F1 

LSTM Aug. 0.608 0.592 0.600 

 Real 0.558 0.535 0.533 

BiLSTM Aug. 0.627 0.627 0.618 

 Real 0.519 0.512 0.512 

BiGRU Aug. 0.824 0.809 0.819 

 Real 0.519 0.512 0.511 

 

Although the amount of real data is too small to make 

generalizations about the classification results, we wanted to 

compare the miscue classification results of augmented data 

results and real data results. Experimental results showed that 

even though it is a model trained with augmented data, our 

miscue classifier yields an F1 score of 0.5 or more in real 

miscue. 

In addition, Table 3 shows the F1 score on each miscue types. 

EXT in real miscue all showed the same value. This seems to 

be caused by too few samples of the miscue type EXT (9 

samples). BiGRU showed the best overall performance for 

augmented data. On the other hand, the differences in 

performance were similar across all three models for real data. 

Table 3: Classification results on each miscue. Best 

scores for each miscue types are bolded. 

Model Data EXT PAU PRE 

LSTM Aug. 0.498 0.875 0.601 

 Real 0.497 0.550 0.493 

BiLSTM Aug. 0.613 0.903 0.751 

 Real 0.497 0.540 0.495 

BiGRU Aug. 0.516 0.948 0.782 

 Real 0.429 0.548 0.520 

4. Discussion 

In this paper, we proposed a method for automatic miscue 

detection in the absence of miscue labeled data by using data 

augmentation. Despite the fact that we only trained with 

artificially generated data, our miscue detection model yields 

F1 score of about 0.512 for real data and 0.819 for augmented 

data. A direct comparison of our F1 score with existing work is 

not possible due to the difference in audio data characteristics. 

However, as a rough comparison, the current state-of-the art on 

miscue detection tasks [7, 8] report an F1 score of about 0.6 to 

0.65, which is comparable to our score of 0.819 on augmented 

data. However, for real data we obtained a slightly lower F1 

score of 0.512. 

Our three proposed directions for increasing the F1 score for 

real data are as follows. First, since the number of real data 

available for testing was too small, we would like to collect 

more real data in the future for further validation on our miscue 

classifier. Second, increasing the accuracy of miscue types with 

low classification accuracy is needed. Our miscue classification 

results show that in all three RNN models, the accuracy of 

miscue type PAU and PRE are relatively higher than EXT. This 

trend was observed with the real miscue data as well as with the 

augmented data. One possible reason for the relatively easy 

detection of PAU and PRE may be due to the silence in which 

there is an absence of amplitude volume. Therefore, additional 

effort for building miscue types without silence is required. 

Finally, considering that we only generated three types of 

miscues, we plan to generate additional miscue types using 

additional methods such as generative adversarial network 

(GAN). 
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