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Abstract
In this paper, we present a state-of-the-art system for audio
event detection. The labels on the training (and evaluation) data
specify the set of events occurring in each audio clip, but neither
the time spans nor the order in which they occur. Specifically,
our task of weakly supervised learning is the “Detection and
Classification of Acoustic Scenes and Events (DCASE) 2017”
challenge [5]. We use the winning entry in this challenge given
by Xu et al. [10] as our starting point and identify several im-
portant modifications that allow us to improve on their results
significantly. Our techniques pertain to aggregation and consol-
idation over time and frequency signals over a (temporal) se-
quence before decoding the labels. In general, our work is also
relevant to other tasks involving learning from weak labeling of
sequential data.

1. Introduction
Multi-label audio event detection is a task that comprises of de-
tecting various audio classes present in the audio file. Machine
learning (ML) models can be trained using some labeled data
to do this audio class detection. However, in practice, the avail-
able labeling may be weak, that is, the class labels might not
be available with associated timestamps of the audio events. A
task of learning to predicting these labels under weak super-
vision was presented as the Audio tagging task in the Detec-
tion and Classification of Acoustic Scenes and Events (DCASE)
2017 challenge [5]. The challenge was to evaluate systems for
the large-scale detection of sound events using weakly labeled
training data. The best performing system in this challenge by
Xu et. al. [10] models the temporal structure of each sound clip
using a recurrent neural network. It also benefits in robustness
and numerical stability by making use of gated convolutional
units in the earlier ReLU activations.

1.1. Related Work

Adavanne et al. [1] and Parascandolo et al. [7] propose the first
uses of convolutional architectures for sound event detection us-
ing weakly labeled data. They benefited from the use of 2-d
convolutions over audio spectrograms presumably because the
audio class is influenced by interpolations on both the time and
frequency domains. As mentioned above, the winner [10] of the
challenge replaced ReLU activations with a gated unit compris-
ing of a linear and sigmoid. This is done to introduce attention
to each layer of the neural network. They get additional bene-
fits by employing a recurrent neural network later to model the
temporal structure of each sound clip.

While most approaches have implicitly associated the clip-
level labels with every segment in it, some like Yu et al. [11],
Feng et al. [3] and Tseng et al. [9] have viewed a clip as a set of
instances, where each instance is a fixed image/audio segment
and approached the problem as a multi-instance, multi-labeled
(MIML) problem. However, this treatment did not yield the best

reported results.
Xu et al. [10] also predicted the time span for the audio

activity using a soft argmax operator (which they refer to as
softmax based attention).

1.2. Our Contributions

- We build upon the best performing system to advance
state-of-the-art (weakly supervised learning approach)
on the DCASE 2017 sound event detection task.

- We show that a suite of simple operators that aggre-
gate evidence across time can further improve the per-
formance significantly. These operators aggregate a
sequence of time-indexed vectors into a single vec-
tor. In particular, we consider a “max-of-means” op-
erator which averages the vectors in a sliding window
across time and aggregates the resulting vectors using a
coordinate-wise maximum operation.

- We demonstrate significant benefits of the proposed op-
erators using extensive experimentation and also present
ablation tests to draw further insights.

We believe that our proposed operators can complement exist-
ing best practices for many audio and video classification tasks.

2. Model architecture
Our architecture is inspired by the publicly available code of
Xu et al. [10] which is the winning entry of the challenge. This
architecture used the Gated Linear Unit (GLU) of Dauphin et
al. [2] in place of the Relu activation by Nair et al. [6]. GLUs
use a sigmoid gate, the value of which determines the flow of
information. A GLU can be defined as:

Y = (W ∗X + b)⊗ σ(V ∗X + c)

Here σ is the sigmoid operator whereas ⊗ is the element wise
multiplication and X is the input. We use 4 Gated Convolu-
tion blocks, each block containing two gated convolutions fol-
lowed by an operator that consolidates signals from both time
and frequency units and is therefore referred to as a t-f operator.
Each convolution block contains two convolution layers with
64 filters of size 3× 3 with gated linear units as activation. Our
suite of t-f operators includes max pool over frequency, max
pool over time, mean over time as well as some of their com-
positions such as max across frequency with mean across time,
max pool across both frequency and time, etc.

Following the four gated convolutional blocks described
earlier is another convolution layer of 256 filters of size 3 × 3
followed by another max pool across frequency. The output
from this convolutional network is fed into a BiRNN block with
128 GRU units and GLUs in place of activation. The output
from the previous layer is fed into fully connected layers with
softmax and sigmoid activations. The weights in the softmax
layer are used to compute a weighted mean of the sigmoid layer
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Figure 1: Network Architecture. (A) t-f operators

Figure 2: Network Architecture. (B) t-operator

to finally get the label predictions. The softmax can also be used
to predict time stamps for sound events in the audio clip. For
this, we take cue from the work of Xu et al. [10], and check
if jointly training a model to classify the audio segment while
also learning to predict the time-stamp using a soft-argmax op-
erator mutually help each other. While we find marginal gains
using this joint learning, we translate this somewhat insightful
experiment into another alternative ( the mean over time).

In the first variant of the model, following the BiRNN layer,
we use an operator that consolidates signals on the time unit,
hereafter referred to as a t-operator. The suite of t-operators
include mean over time [8], a similar max over time and their
compositions such as max over mean over time. In this case,
we use max over frequency as t-f operator. The output from the
t-operator is fed into a fully connected layer with sigmoid unit
that is trained to predict labels.

In another variant of this architecture, instead the Gated
Convolution blocks, we use 5 convolutional blocks, wherein
each block contains two convolutional layers with same num-
ber of filters followed by a max over frequency. The number of
filters is gradually increased in each block from 16 to 256. In
this architecture, we use ReLU as our activation function for the
convolutional blocks. This layer is followed by BiRNN layer
and the rest of the architecture is same as the architecture for
the t-operator. We call this model ReLU convolutions model.
We suggest one more variant for the ReLU convolutions model
where we replace the Gated Linear units in the BiRNN block
with ReLU we call it ReLU CNRNN model.

In Figure 1, we present our network architecture highlight-
ing the place of t-f operators. Whereas, in Figure 2, we remove
the fully connected block at the end of the previous network
and instead feed output from the BiRNN block to one of our
proposed t-operators.

3. Experiments

3.1. Dataset

For our experiments, we used the training, development and
evaluation sets predefined by DCASE 2017 for the audio event
detection challenge [5]. These datasets are fixed subsets of the
Google AudioSet corpus [4] and consist of sound clips from 17
different audio events relating to vehicle sounds (‘Car’, ‘Train’,
etc.) and warning sounds (‘Fire engine’, ‘Ambulance siren’,
etc.). The training, development and evaluation sets contain a
total of 51172, 488 and 1103 audio clips, respectively. These
datasets are weakly labeled in that only the types of the audio
events occurring in the clip are provided, but the timestamp of
the events are not specified. In each of these datasets, the label
distribution across the 17 audio event classes is highly unbal-
anced. For example, the ‘Car’ class is most frequent with a total
of 25, 744 clips whereas the ‘Car alarm’ class is least frequent
with a total of 273 clips.

3.2. Implementation Details

Log-mel filterbank features extracted from the raw audio wave-
forms were fed as input to our architecture. Each training clip
has 240 time steps with 64 mel frequency bands in each time
step. Our model implementation largely borrows from the pub-
licly available code of the winning system [10]. We adopt three
training strategies that were initially proposed for the winning
system: 1) Batches were created such that even the least fre-
quent classes were included in each batch. 2) Instead of setting a
fixed threshold across all classes, class-specific thresholds were
determined by tuning on the development set. 3) Predictions
across epochs for the same system were averaged in order to
improve its stability.
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Model F1 Score Precision Recall
State of the art [10] 0.567 0.538 0.601

State of the art (Fusion) [10] 0.577 0.565 0.589
Max across both (Benchmark) 0.570 0.531 0.614

Max Frequency 0.575 0.540 0.614
Avg Time Max Freq 0.582 0.545 0.625

Avg Freq 0.527 0.487 0.574
Table 1: Comparison of models on development Set for different
t-f operators

Model F1 Score Precision Recall
State of the art [10] 0.542 0.589 0.502

State of the art (Fusion) [10] 0.556 0.614 0.508
Max across both (Benchmark) 0.570 0.534 0.611

Max Freq 0.546 0.506 0.592
Avg Time Max Freq 0.557 0.516 0.605

Avg Freq 0.519 0.473 0.574

Table 2: Comparison of models on evaluation Set for different
t-f operators

3.3. Results

We first evaluate the utility of our t-f operators which appear
before the BiRNN block in our architecture. Tables 1 and 2
show the F-1 score/precision/recall breakup for different t-f
operators. The first two rows correspond to the current state-
of-the-art scores for this task, as reported in Xu et al. [10], from
their best-performing individual system and fusion system, re-
spectively. The third row corresponds to our extension of the
best individual system from Xu et. al. [10]. Our reimplemen-
tation leads to slightly higher numbers on both the develop-
ment and evaluation sets; this system is henceforth referred to
as “Benchmark”. Each of the t-f operators that we have sug-
gested, with the exception of mean over frequency, outperforms
the “benchmark” on the development set but not always on the
evaluation set. We believe this could be due to differences in the
distribution of sound events across the development and evalu-
ation sets: Since we tune threshold values on the development
set, this difference in class distribution could likely affect per-
formance on the evaluation set.

Tables 3 and 4 show results from using our t-operators fol-
lowing the BiRNN block in our architecture. For easy com-
parison, we show the state-of-the-art scores from Xu et al. [10]
again in both the tables. On both the development and evalua-
tion sets, we observe consistent improvements for every choice
of our t-operator. The “mean over time” t-operator improves
even over the “state of the art (Fusion)” system shown in Ta-
bles 1 and 2. The “max over time” operator improves only
marginally compared to the “mean over time” operator on the
development set (i.e. 0.599 vs. 0.591), but provides a larger
improvement on the evaluation set (0.575 vs. 0.561). The “max
over mean” operator was designed to combine the best prop-
erties of both the preceding operators: Average a fixed set of
time-indexed vectors in a sliding window across time and use
a coordinate-wise maximum operation to reduce it to a single
vector. This is the best-performing t-operator both on the de-
velopment and evaluation sets.

In Tables 5 and 6, we experiment with the “ReLU convolu-
tions” and “ReLU CNRNN” variants of the convolutional net-

Model F1 Score Precision Recall

State of the art [10] 0.567 0.538 0.601
State of the art (Fusion) [10] 0.577 0.565 0.589

Mean over time 0.591 0.556 0.630
Max over time 0.599 0.574 0.625

Max over mean over time 0.601 0.590 0.614

Table 3: Comparison of models on the development set for dif-
ferent t-operators

Model F1 Score Precision Recall

State of the art [10] 0.542 0.589 0.502
State of the art (Fusion) [10] 0.556 0.614 0.508

Mean over time 0.561 0.517 0.615
Max over time 0.575 0.541 0.613

Max over mean over time 0.590 0.567 0.616

Table 4: Comparison of models on the evaluation set for differ-
ent t-operators

work that we described earlier in Section 2. We used the “max
over mean” t-operator (which performed the best, as shown in
Tables 3 and 4) with both these variants. We find additional
benefits in performance from using these two variants with the
t-operator. To assess the importance of the t-operator, we also
experimented with using the “ReLU CNRNN” networks with-
out adding the t-operator after the BiRNN layers; this did not
perform as well, the results are reported in Table 5 and 6.

3.4. Class-wise Analysis

In Tables 7 and 8, we summarize the class-wise F1 scores of all
the different models on the development set and the evaluation
set, respectively. For each class, the best F1 score is highlighted
in bold. The column “Net wins” lists the net number of classes
on which each model outperforms the benchmark model.

From the tables, we observe the following:

- Firstly, we observe that all our systems have a positive

Model F1 Score Precision Recall

ReLU Convolution 0.610 0.573 0.652
ReLU CNRNN (no t-operator) 0.601 0.565 0.642

ReLU CNRNN ((2,2) pool) 0.589 0.583 0.594
ReLU CNRNN (with t-operator) 0.601 0.576 0.629

Table 5: Performance of the ReLU based variants on the devel-
opment set

Model F1 Score Precision Recall

ReLU Convolution 0.576 0.535 0.623
ReLU CNRNN (no t-operator) 0.582 0.538 0.634

ReLU CNRNN ((2,2) pool) 0.574 0.561 0.589
ReLU CNRNN (with t-operator) 0.591 0.562 0.624

Table 6: Performance of the ReLU based variants on the evalu-
ation set
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Table 7: Class-wise comparison of models on development set

Train Air horn, Car Reversing Bi- Skate- Ambu- Fire Civil def- Police Scream- Car pass- Motor- Net
Model horn truck horn alarm beeps cycle board lance engine ense siren car ing Car ing by Bus Truck cycle Train wins

Max across both (Benchmark) 0.79 0.53 0.62 0.67 0.51 0.76 0.55 0.61 0.82 0.63 0.64 0.40 0.36 0.51 0.44 0.52 0.69 0
t-operator: mean over time 0.84 0.63 0.55 0.76 0.54 0.70 0.56 0.59 0.84 0.61 0.69 0.48 0.42 0.45 0.50 0.58 0.70 +7
t-operator: max over time 0.87 0.55 0.64 0.77 0.52 0.76 0.53 0.56 0.81 0.60 0.72 0.48 0.50 0.49 0.51 0.59 0.67 +4
t-operator: max after mean 0.81 0.64 0.71 0.71 0.51 0.72 0.60 0.60 0.79 0.55 0.77 0.52 0.42 0.43 0.48 0.56 0.72 +6
ReLU CNRNN (no t-operator) 0.84 0.58 0.79 0.73 0.58 0.76 0.50 0.53 0.79 0.63 0.71 0.50 0.36 0.48 0.52 0.59 0.71 +6
ReLU CNRNN (with t-operator) 0.83 0.53 0.69 0.69 0.60 0.78 0.48 0.65 0.83 0.63 0.71 0.49 0.38 0.44 0.53 0.50 0.73 +9
ReLU CNRNN ((2,2) pool) 0.77 0.57 0.57 0.71 0.53 0.72 0.55 0.53 0.80 0.60 0.78 0.44 0.36 0.55 0.55 0.56 0.69 +2
ReLU Convolution (with t-operator) 0.86 0.56 0.73 0.76 0.56 0.74 0.62 0.58 0.85 0.62 0.78 0.51 0.39 0.50 0.50 0.52 0.73 +8

Table 8: Class-wise comparison of models on evaluation set

Train Air horn, Car Reversing Bi- Skate- Ambu- Fire Civil def- Police Scream- Car pass- Motor- Net
Model horn truck horn alarm beeps cycle board lance engine ense siren car ing Car ing by Bus Truck cycle Train wins

Max across both (Benchmark) 0.63 0.52 0.51 0.37 0.37 0.57 0.67 0.59 0.85 0.57 0.77 0.62 0.31 0.34 0.50 0.60 0.73 0
t-operator: mean over time 0.62 0.53 0.64 0.42 0.37 0.66 0.62 0.60 0.80 0.36 0.82 0.62 0.27 0.42 0.44 0.59 0.74 +1
t-operator: max over time 0.63 0.58 0.62 0.40 0.39 0.64 0.58 0.61 0.84 0.48 0.84 0.64 0.27 0.37 0.48 0.65 0.71 +4
t-operator: max after mean 0.65 0.58 0.65 0.40 0.36 0.64 0.57 0.59 0.80 0.52 0.81 0.64 0.27 0.39 0.48 0.65 0.76 +4
ReLU CNRNN (no t-operator) 0.60 0.57 0.59 0.47 0.46 0.62 0.56 0.48 0.77 0.64 0.79 0.65 0.26 0.43 0.49 0.58 0.74 +3
ReLU CNRNN (with t-operator) 0.63 0.60 0.59 0.48 0.48 0.60 0.57 0.60 0.85 0.53 0.80 0.65 0.25 0.41 0.47 0.64 0.76 +7
ReLU CNRNN ((2,2) pool) 0.61 0.58 0.55 0.44 0.42 0.62 0.60 0.53 0.84 0.43 0.79 0.64 0.28 0.40 0.48 0.53 0.79 +1
ReLU Convolution (with t-operator) 0.63 0.57 0.60 0.44 0.43 0.59 0.52 0.59 0.84 0.55 0.81 0.64 0.30 0.45 0.49 0.57 0.74 +3

score for net wins (both on the development set and the
evaluation set).

- In terms of net wins, the ReLU CNRNN model performs
the best.

- The t-operator provides consistent gains in performance.
This can be clearly seen, for example, when we compare
the net wins of ReLU CNRNN (no t-operator) and ReLU
CNRNN (with t-operator) on both the development and
evaluation sets.

- For most of our models, the evaluation set shows some-
what less improvements compared to the development
set. (Indeed, for 4 classes, the benchmark model per-
forms the best in the evaluation set, whereas this hap-
pens for only one class (with a tie) in the development
set.) This can be attributed to the fact that some of the
classes are sparsely represented in the data and hence the
corresponding results can be sometimes inconsistent for
those specific classes and overall show high variance.

- Different classes have different systems performing well
on them. Overall, we observe that the classes from the
group of “Warning” sounds (i.e. Train horn, Air horn,
Truck horn, Car alarm, Reversing beeps, Ambulance,
Police Car, Fire engine, Civil defense siren and Scream-
ing) perform better than the classes from the group of
“Vehicle sounds” (i.e. all classes except ones that are cat-
egorized as “Warning sounds”) across all models. This is
generally true for humans as well, in that humans find it
easier to accurately identify sirens as opposed to vehicle
sounds.

“Car passing by” is an example of a class that performs
poorly on the evaluation set across all models. This poor perfor-
mance could also be attributed to the quality of the annotations
for this particular class of sounds. The Audioset [4] website
lists a quality value for each audio class by conducting an inter-
nal quality assessment of a random sample of videos for each
class. “Car passing by” was not estimated to be of high quality;
only 5/10 (i.e. 50%) of the random samples were found to be
accurate for this class. This high amount of noise in the labels is
likely to have contributed to this class performing poorly across
all the models.

4. Conclusion and Future Work
In summary, we present a set of simple time-aggregation opera-
tors that provide significant improvements on an audio detection
task where we surpass the previously best-performing system to
set a new state-of-the-art. We provide a detailed analysis of the
performance of our systems across different audio events, which
gives us further insights about which events are easier to pre-
dict and when we can expect degradation in performance. For
future work, we hope to scale our model so that it works effi-
ciently with a larger set of classes from the Audioset corpus [4].
We also intend to explore better strategies to automatically learn
good thresholds for each class rather than manually determine
class-specific thresholds.
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