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Abstract
Hypernasality refers to the perception of excessive nasal reso-
nances in vowels and voiced consonants. Existing speech pro-
cessing based approaches concentrate only on the classification
of speech into normal or hypernasal, which do not give the
degree of hypernasality in terms of continuous values like na-
someter. Motivated by the functionality of nasometer, in this
work, a method is proposed for the evaluation of hypernasal-
ity. Speech signals representing two extremely opposite cases of
nasality are used to develop the acoustic models, where oral sen-
tences (rich in vowels, stops, and fricatives) of normal speak-
ers and nasal sentences (rich in nasals and nasalized vowels) of
moderate-severe hypernasal speakers represent the groups with
minimum and maximum attainable degrees of nasality, respec-
tively. The acoustic features derived from glottal activity re-
gions are used to model the maximum and minimum nasality
classes using Gaussian mixture model and deep neural network
approaches. The posterior probabilities obtained for nasal sen-
tence class are referred to as hypernasality scores. The scores
show a significant correlation (p < 0.01) with respect to per-
ceptual ratings of hypernasality, provided by expert speech-
language pathologists. Further, hypernasality scores are used
for the detection of hypernasality, and the results are compared
with the nasometer based approach.
Index Terms: Posterior probability, Hypernasality, Nasal sen-
tences and oral sentences, Nasometer.

1. Introduction
Speech of individuals with cleft lip and palate (CLP) is charac-
terized by the presence of hypernasality and articulation errors.
In speakers with CLP, the presence of velopharyngeal insuffi-
ciency (VPI) or oro-nasal fistula leads to increase in the loss of
acoustic energy through the nasal cavity, which results in hyper-
nasal speech. Hypernasality refers to the perception of exces-
sive nasal resonances on vowels and voiced consonants [1, 2].
Hypernasality is considered as an important parameter during
evaluation of the outcome of surgery and speech therapy of the
individuals with CLP. Clinically, hypernasality is evaluated us-
ing perceptual methods by trained speech-language pathologists
(SLPs). The perceptual evaluation is considered as a golden
standard, however, the results are subjective in nature. Alterna-
tively, different instrumental methods have been proposed for
the assessment of VPI and hypernasality, which are reviewed in
detail in Ref. [3].

Among the different instrumental based hypernasality as-
sessment techniques, nasometer is used widely in the clini-
cal and research applications [3]. Nasometer uses two micro-
phones to collect the acoustic signals from nasal and oral cavi-
ties, where a baffle plate is used to separate between upper lip
and nose. Nasometer gives an objective measure of nasality,

which is referred to as nasalance score. The nasalance score
has a range of 0-100, which showed good correlation with the
perceptual judgment of hypernasality. Also, the nasometer can
be used for the biofeedback training [3]. However, nasometer
cannot be operated on stored data and also, requires subject’s
cooperation and technically trained persons to handle it.

Apart from perceptual and instrumental methods, speech
processing based techniques are proposed for the hypernasality
analysis, which do not require complex hardware and gives ob-
jective evaluation results [3, 4]. The presence of extra-nasal for-
mants around 250 Hz and 1000 Hz in vowel spectrum, increase
in the first formant bandwidth, reduction in second formant
strength, and increase in the spectral flatness are considered
as the important acoustic cues of hypernasality [5, 6, 7]. Mel-
frequency cepstral coefficients (MFCCs), glottal source related
features (jitter and shimmer), wavelet transform based features,
Gaussian mixture model (GMM) and support vector based clas-
sifiers have been explored for the hypernasality detection from
word and sentence level data [8, 9, 10]. Also, automatic classifi-
cation of speech into normal, mild, moderate, and severe levels
of hypernasality is proposed in Ref.[8, 9], where GMMs are ex-
plicitly trained for these classes. However, these methods have
limitation to use for the clinical applications. Because, the re-
sults are not in the form of continuous scores like nasometer.
The degree of hypernasality cannot be determined using exist-
ing acoustic methods, which is essential to verify the effect of
speech therapy and surgery.

The present work mainly motivated to propose a speech
processing based approach to estimate the hypernasality scores.
The proposed work uses acoustic features and machine learn-
ing approaches to estimate the hypernasality scores. The paper
is organized as follows. Section 2 describes the database for
the analysis of hypernasality. Section 3 explains the proposed
approach for the hypernasality score estimation. The results of
proposed system and comparison with nasometer are presented
in Section 4. Finally, Section 5 gives conclusion and mentions
the scope for future work.

2. Database
In this work, 31 children with repaired cleft lip and palate/cleft
palate (RCLP) of age range 6-12 years are considered. 48 typi-
cally developed children with age and gender-matched are con-
sidered as the controlled normal (CN) group. Both CN and
CLP subjects have Kannada as their mother tongue (Kannada
is a Dravidian language, spoken in the southern part of India).
The children with RCLP are diagnosed at Unit for Structural
and Cranio-facial Anomalies (USOFA), All India Institute of
Speech and Hearing (AIISH), Mysore, India [11] using nasome-
ter and perceptual assessment techniques. All children consid-
ered do not have a history of hearing loss and language disor-
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ders.
The speech stimuli consist of 6 oral and 6 nasal sentences

prepared in the Kannada language. Here, oral sentences refer
to sentences rich in vowels, stops, and fricatives, whereas nasal
sentences contain the nasal consonants and nasalized vowels.
Examples for the oral sentence: [kaage kaalu kappu] and nasal
sentence: [manu aneyannu nodida]. All these stimuli are pre-
pared by expert SLPs of AIISH and regularly used for the clin-
ical assessment of hypernasality. These sentences are recorded
in a sound treated room using sound level meter held at a dis-
tance of 15 cm from the subject. The recordings are obtained
at 48000 Hz sampling frequency and digitized at 16 bit/sample.
The samples are recorded at multiple sessions. In total, 416
tokens of oral and 200 tokens of nasal sentences are recorded
from CN group and 145 tokens of oral and 300 tokens of nasal
sentences are recorded from CLP subjects. Also, for each sub-
ject nasometric evaluation is carried out using the oral and nasal
sentences. Nasometer II 6400 is used for this purpose, and mean
nasalance score of each sentence is noted.

Compared to nasal sentences, oral sentences are more cor-
related with the degree of perceptual hypernsality [2]. The per-
ceptual evaluation of oral sentences is carried out by three ex-
pert SLPs, using Henningsson 4 point rating scale defined in
Ref. [2]. The 4 point hypernasality rating scale consists of val-
ues in the range of 0-3, where 0-normal, 1-mild, 2-moderate,
and 3-severe. Correlation coefficients derived for the ratings
of each pair of SLPs, i.e., 1st and 2nd, 2nd and 3rd, 1st and
2nd SLPs are 0.74, 073, and 079, respectively. Also, 30% of
samples are given to the same SLP to measure the intra rater
reliability. The correlation coefficients 0.95, 0.91, and 0.95 ob-
tained for 1st, 2nd, and 3rd SLPs, respectively as a measure of
intra rater reliability. For each sentence, the median value of
perceptual scores given by 3 SLPs is computed. Finally, out of
145 oral sentences of CLP, 13, 76, 51, and 5, are categorized
into normal, mild, moderate, and severe hypernasality groups.
Further, speakers are grouped into normal, mild, moderate, and
severe groups based on the maximum number of sentences be-
longing to that particular class.

Hypernasality severity groups
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Figure 1: Bar graph of nasalance scores for oral and nasal sen-
tences of normal, mild, moderate, and severe hypernasal speak-
ers.

3. Proposed Method
The proposed work for the estimation of hypernasality score is
mainly motivated by the nature of nasalance scores of nasome-
ter for oral and nasal sentences. The nasalance score (N) can be
computed using the equation given by

N =
NE

OE +NE
× 100 (1)

where NE and OE are the energies of the acoustic signals ac-
quired from nasal and oral microphones, respectively. Mean

nasalance scores derived for oral and nasal sentences are indi-
cated in the bar graph shown in Fig. 1. From bar graph the
following observations can be drawn:

1. The nasalance scores are high for nasal sentences when
compared to oral sentences.

2. The discrimination of nasalance scores between the
group of nasal and oral sentences is greater for normal
speakers and reduces from mild to moderate and moder-
ate to severe hypernasal speakers. Because in moderate-
to-severe hypernasal speakers, most of the oral conso-
nants (/b/, /p/) are replaced by nasals (/m/, n/) and vowels
get severely nasalized [2].

3. The oral sentences of the normal group exhibit minimum
nasality whereas nasal sentences of the severe group
show maximum nasality.

Motivated by the behaviour of nasalance values for target
oral and nasal sentences as a function of the degree of hyper-
nasality, the current work proposes an approach for the estima-
tion of hypernasality scores. In this work, a two-class classifier
is developed for the oral class: using sentences with minimum
nasality (oral sentences of normal speakers) and nasal class:
using sentences with maximum attainable nasality (nasal sen-
tences of the moderate-severe hypernasal group). During test-
ing, features derived from the response of speaker for the target
oral sentence is given for the classifier. The posterior probabil-
ities derived for the nasal class are considered as hypernasality
scores.

The proposed algorithm for hypernasality score estimation
consists of different steps, i.e., glottal activity region detec-
tion, feature extraction, training of classifier for oral and nasal
classes, and posterior probability computation. These steps are
explained in the next subsections.

3.1. Glottal activity detection

The current work incorporates the glottal activity detection
(GAD) algorithm as a preprocessing stage. GAD algorithm pro-
posed in [12] is used, where glottal activity regions are detected
by the combination of the features, namely, the strength of exci-
tation (SoE), normalized autocorrelation peak strength (NAPS),
and higher order statistics (HoS). SoE, NAPS, and HoS rep-
resent the energy, periodicity, and asymmetry of the glottal
source signal, respectively. These three evidences are combined
through averaging and using a heuristic threshold equal to 0.6;
the speech frames are classified into voiced and unvoiced.

3.2. Feature Extraction

The speech signal is segmented into frames of length equal to
20 ms with a shift of 5 ms. Then 13-dimensional MFCCs, with
delta and delta-delta variants are computed only for the frames
with the presence of glottal activity. Thus, the dimensionality
of each feature vector is equal to 39.

3.3. Classifiers

In this work, Gaussian mixture model (GMM) and deep neu-
ral networks (DNN) are trained for the oral sentences of nor-
mal speakers and nasal sentences of moderate-severe hyper-
nasal speakers.

3.3.1. Gaussian Mixture Model

Let λO = {µi,Σi, ωi}O , i = 1, 2, ...M represent the GMM
model for the class of oral sentences (λO) with M number of
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Figure 2: Illustration of the significance of GAD in the computation of hypernasality scores for the sentence “sarita kattari taa”. (a)-
(d), (e)-(h), and (i)-(l) represent the speech signal, spectrogram, contour of posterior probabilities scores for hypernasal class without
glottal activity and with glottal activity detection, respectively for normal, mild and moderate-severe hypernasal speech. In (d), (h),
and (l) dotted lines indicate the posterior probability values and solid lines indicate the detected glottal activity regions. Application of
GAD reduces the spurious scores resulting from unvoiced regions.

mixtures. The parameters µi, Σi, ωi represent mean, covariance
matrix, and weight of ith Gaussian, respectively. The mixture
parameters are estimated using expectation maximization (EM)
algorithm. Similarly, λN = {µi,Σi, ωi}N , i = 0, 1, 2, ...M
represent the GMM for the class of nasal sentences (λN ) be-
longing to the group of moderate-severe hypernasality.

The tokens corresponding to target oral sentences are used
for the testing. The posterior probability of class λN given a
feature vector xi, i = 1, 2...T , is computed using

p(λN |xi) =
p(xi|λN )p(λN )

p(xi|λO)p(λO) + p(xi|λN )p(λN )
(2)

where class priori probabilities p(λN ) and p(λO) chosen equal
to 0.5 by assuming two classes are equi-probable, p(xi|λO) and
p(xi|λN ) are likelihood values estimated from GMMs λO and
λN , respectively.

The likelihood of nasal class p(xi|λN ) and oral class
p(xi|λO) in equation 2 are proportional to the nasal and oral
sound characteristics present in the speech signal, respectively.
The terms NE and OE in equation 1 are proportional to the
nasal and oral sound energies, respectively. Since the nasalance
value in equation 1 is proportional to the amount of nasal energy
present in the speech signal. Similarly, the posterior probabil-
ity value p(λN |xi) in equation 2 is proportional to the presence
of nasal sound characteristics in the speech signal. Therefore,
due to the existence of the similarity between the computation
of nasalance score and the posterior probability of nasal class
(equations 1 and 2), the posterior probability scores are ex-
pected to give a measure of nasality.

The models λO and λN are trained for the GMMs with 64
mixtures, diagonal covariance matrix using EM algorithm. Pos-
terior probabilities p(λN |xi) computed for the target oral sen-
tence “sarita kattari taa” for different levels of hypernasality
are illustrated in Fig. 2. Fig. 2(a)-(d) show the waveform of
normal speaker for the given target sentence, spectrogram, con-
tours of p(λN |xi) without the inclusion of GAD pre-processing

stage, and with the inclusion of GAD, respectively. Here, with-
out GAD pre-processing stage refers to training and testing of
models are carried out without the inclusion of GAD prepro-
cessing stage. The contour of p(λN |xi) for normal speech
(Fig. 2(c)) shows that the exclusion of GAD pre-processing
stage results in the spurious values at unvoiced regions like
fricatives, stop gaps and silence regions (example: around 0.8
seconds corresponding to stop gap of /k/). This will result in
an increased hypernasality score for the normal speaker and in-
creases the false alarm rate. Similarly, Fig. 2(e)-(h) and (i)-(l)
show the speech waveform, spectrogram, contours of p(λN |xi)
without and with inclusion of GAD for mild and moderate-
severe hypernasal groups, respectively. The p(λN |xi) values
are increased for the mild group than the normal, severe group
than that of mild. This shows that the p(λN |xi) values vary in
proportional to the severity of perceived hypernasality. Glottal
activity region based processing significantly reduces the spuri-
ous hypernasality scores resulted from the unvoiced/silence re-
gions and hence, reduces false alarm rate.

3.3.2. Deep Neural Network

Deep neural network (DNN) based hypernasality detection sys-
tem is developed using Keras [13] toolkit. DNN structure has 3
hidden layers, with ReLU as the activation function for the hid-
den layers, and softmax as the activation function for the output
layer. The hidden layer has 100 neurons. The 39-dimensional
MFCCs are the input features for DNN. The output layer of 2
dimensions corresponding to oral and nasal classes. DNN is
trained with random initialization of weights and biases. The
mini-batch stochastic gradient descent (SGD) is used to opti-
mize the cross-entropy loss function between target labels and
network outputs.

Using softmax function, DNN posterior probability of the
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Figure 3: Boxplots of mean hypernasality scores vs perceived
severity using (a) GMM posteriors, (b) DNN posteriors, and (c)
mean nasalance scores of nasometer

test feature xi for the nasal class λN is given by

p(λN |xi) =
eβNyi

eβOyi + eβNyi
(3)

where βN and βO , represent the weights for nasal and oral
classes, respectively and yi is the output of hidden layer. Sim-
ilar to GMM posterior equation, DNN posterior for the nasal
class is also proportional to nasal sound characteristics present
in the speech signal.

4. Experimental Results and Discussion
The 323 tokens of oral sentences from the CN group and 248
tokens of nasal sentences from the group with moderate-severe
hypernasality are used to train the binary GMM and DNN clas-
sifiers. The test database consists of 106 tokens of oral sen-
tences of normal (93 from CN group and 13 from CLP group,
rated as normal), 76 tokens of mild, and 56 tokens of moderate-
severe hypernasal groups. Due to the availability of smaller
number of samples for the severe group, the moderate and se-
vere groups are merged to form the moderate-severe group. In
testing phase, the frame-wise computed posterior probability
scores are averaged, which is referred as hypernasality score.

Table 1: Statistical Test Results

Groups
GMM posteriors DNN posteriors Nasalance scores

χ2=129.66 χ2=158.99 χ2=157.05

Normal vs. Mild p < 0.01 p < 0.01 p < 0.01

Mild vs. Moderate p < 0.01 p < 0.01 p < 0.01

4.1. Statistical analysis

The GMM and DNN based hypernasality scores for the normal,
mild, and moderate-severe groups are shown in Fig. 3(a) and (b)
respectively. The mean nasalance scores computed for the oral
sentences of test of different hypernasality groups are shown in
Fig. 3(c). The boxplots indicate that as the perceived severity in-
creases, the posterior probability values for the nasal class also
increases similar to that of nasalance values. Because, as the
nasality increases the occurrence of nasal consonants and nasal-
ized vowels in the speech increases. Kruskal-Wallis test is con-
ducted to analyze the significance of discrimination across dif-
ferent groups. Table. 1 shows that the hypernasality scores sig-
nificantly differentiates the different groups of hypernasality at
the level of significance (p < 0.01). For all three methods, post
hoc comparison using Tukey test revealed that between a pair
of groups, the normal vs. mild, mild vs. moderate-severe the
scores are discriminable at a level of significance (p < 0.01).

Table 2: Performance of GMM, DNN based systems and na-
someter

Method Correlation
Classification Performance

Sensitivity (%) Specificity (%) Accuracy (%)

Nasometer 0.78 85.99 86.91 91.06

without GAD + GMM 0.68 79.02 82.13 80.19

without GAD + DNN 0.77 91.72 93.54 91.63

With GAD + GMM 0.71 83.87 83.41 83.65

With GAD + DNN 0.82 93.10 93.54 93.34

4.2. Correlation with perceived severity

Spearman’s correlation coefficients are computed for the pro-
posed hypernasality scores with respect to perceived severity
and that for nasalance values are presented in Table 2. Results
indicate that the usage of glottal activity preprocessing gives
better correlation with respect to perceived severity. This is ob-
served for both GMM and DNN approaches. However, when
compared to GMM, DNN based posteriors give the better cor-
relation with the perceived severity of hypernasality. Also, the
proposed system using DNN shows a better correlation with the
perceived severity than that of nasometer.

4.3. Classification of normal and hypernasality groups

The significance of proposed hypernasality scores for classify-
ing normal and hypernasal speech is analyzed. Here, the thresh-
old on the hypernasality scores is estimated using leave-one-
speaker-out criteria. In each trial, the samples of a particular
speaker is left and an optimum threshold is chosen by minimiz-
ing false alarm rates of classification. The left speaker’s sam-
ples are used for the testing, and classified into normal (less
than the threshold) or hypernasal (equal to or greater than the
threshold). The sensitivity (classification rate of hypernasal),
specificity (classification rate of normal) and overall accuracy
for GMM and DNN methods with and without the application
of GAD pre-processing stage, and nasometer are presented in
Table 2. The results indicate that DNN shows better classifica-
tion accuracy when compared to GMM and nasometer.

5. Conclusion and Future Work
In this work, posterior probability based approach is proposed
for the estimation of the hypernasality scores from CLP speech.
MFCCs derived from glottal activity regions are used to train
binary GMM and DNN classifiers for the two extremely oppo-
site cases of nasality. DNN showed the better correlation with
the perceived severity and discrimination between normal and
hypernasal groups when compared to GMM based approach.
Also, DNN based system outperforms the most widely used
clinical instrument, i.e., nasometer. Therefore, the proposed
system can be used as a tool in the clinical environments for
the assessment of hypernasality.
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