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Abstract
This paper describes an investigation on automatic speech as-
sessment for people with aphasia (PWA) using a DNN based
automatic speech recognition (ASR) system. The main prob-
lems being addressed are the lack of training speech in the
intended application domain and the relevant degradation of
ASR performance for impaired speech of PWA. We adopt the
TDNN-BLSTM structure for acoustic modeling and apply the
technique of multi-task learning with large amount of domain-
mismatched data. This leads to a significant improvement
on the recognition accuracy, as compared with a conventional
single-task learning DNN system. To facilitate the extraction
of robust text features for quantifying language impairment in
PWA speech, we propose to incorporate N-best hypotheses and
confusion network representation of the ASR output. The sever-
ity of impairment is predicted from text features and supra-
segmental duration features using different regression models.
Experimental results show a high correlation of 0.842 between
the predicted severity level and the subjective Aphasia Quotient
score.
Index Terms: Speech assessment, aphasia, TDNN-BLSTM,
multi-task learning

1. Introduction
Aphasia refers to a type of acquired language impairment typi-
cally caused by stroke. The impairment could span across var-
ious levels and components of the language system, including
phonology, lexicon, syntax, and semantics [1]. Speech assess-
ment is an essential part of the comprehensive assessment pro-
cess, which mainly aims at determining the type and/or sever-
ity of impairment for people with aphasia (PWA). It is realized
by acoustical and linguistic analysis of PWA speech elicited
through story-telling tasks. There have been a few studies on
automatic analysis of speech from PWA. In [2, 3], Fraser et al.
used acoustic and text features for automatic classification of
sub-types of primary progressive aphasia. The proposed text
features were derived from manually prepared speech transcrip-
tion. In a subsequent study [4], a commercial automatic speech
recognition (ASR) system was used to generate the speech tran-
scription for text feature extraction. However, the low recog-
nition accuracy of this general-purpose ASR system on PWA
speech limits its practical use in the PWA speech assessment.

In our previous study [5], a framework of fully automatic
speech assessment for Cantonese-speaking PWA was devel-
oped. A domain-matched ASR system trained with unimpaired
speech was used to decode PWA speech into syllable sequences
with time alignment information. Supra-segmental duration
features were computed from the time alignment, while text
features were extracted by a novel method of syllable-level em-
bedding based on the ASR output. The assessment of severity

of speech impairment was formulated as a regression problem
with the combined features. It was noted that the ASR system
had a low accuracy on impaired speech (average syllable error
rate (SER) of 48.08%). This inevitably affected the reliability
and robustness of the extracted features.

A common problem in developing of ASR systems for atyp-
ical speech, including the PWA speech, is due to the lack of
training data that are appropriate in terms of spoken content,
speaking style, etc. In [5, 6], although a limited amount of
domain-matched unimpaired speech were available, they were
not sufficient to support the use of most advanced deep learn-
ing techniques. In [7] and [8], tandem feature and discrimina-
tive pretraining based out-of-domain adaptation methods were
applied to improve the ASR performance on a smaller impaired
speech corpus. The out-of-domain data could be healthy speech
or other types of impaired speech.

In this paper, we propose to use multi-task learning (MTL)
strategy to improve the performance of a domain-matched ASR
for PWA speech assessment. Under the MTL framework [9],
related tasks could be used to share internal representations and
jointly learned to improve the generalization of acoustic models
[10]. We make use of two large-vocabulary databases of unim-
paired Cantonese speech to formulate two auxiliary learning
tasks of phone-level acoustic modeling, with the goal of boost-
ing the recognition accuracy for story-telling speech as the main
task. Time delay neural network (TDNN) [11] and long-short-
term memory recurrent neural network (LSTM-RNN) [12] are
well known of the capability of capturing long-term temporal
dependency of acoustic events. Bidirectional LSTM (BLSTM)
[13] is an extension to LSTM with both preceding and succeed-
ing contexts considered. TDNN-BLSTM has demonstrated its
effectiveness in DNN-HMM hybrid acoustic modeling for ASR
[10, 14]. This motivates the use of TDNN-BLSTM with MTL
in this study.

On the other hand, rich representation of ASR output, such
as N-best hypotheses [15] and confusion networks [16], has
been widely used in spoken language understanding and speech
translation [17, 18]. In order to mitigate the effect of ASR er-
rors, we propose to incorporate rich representation of ASR out-
put into the computation of text features.

2. Datasets
2.1. Domain-matched dataset: Cantonese AphasiaBank

Cantonese AphasiaBank (CanAB) is a large-scale multi-modal
database jointly developed by the University of Central Florida
and the University of Hong Kong [19]. The corpus contains
audio recordings of spontaneous speech from 104 aphasic sub-
jects and 149 unimpaired subjects. Each subject was requested
to complete 8 narrative tasks, including 4 picture descriptions,

Interspeech 2018
2-6 September 2018, Hyderabad

3418 10.21437/Interspeech.2018-1630

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1630.html


1 procedure description, 2 story telling and 1 personal mono-
logue. Except the personal monologue, the speech produced in
each task is expected to be with a specific topic (referred as a
“story”). Speech data were manually transcribed into Chinese
characters. Fillers, unintelligible speech and non-speech sounds
were represented by special symbols. For the development of
Cantonese ASR system, the characters were converted into Can-
tonese syllables using a pronunciation lexicon [20]. All aphasic
subjects went through a standardized assessment system using
the Cantonese Aphasia Battery [21]. It involves a number of
sub-tests measuring the subject’s speech fluency, information
content and so on [21]. The assessment result is a composite
score named the Aphasia Quotient (AQ). The value of AQ (0 -
100) is regarded as an indication of overall severity of language
impairment. Lower AQ value implies higher degree of severity.

For various non-technical reasons, not all of the recorded
speech in CanAB were accurately transcribed. In this study, 101
unimpaired speakers’ speech recordings of 8 tasks (about 12.6
hours) are selected as training set. The test set contains about
10.1 hours speech recordings of 7 tasks (except personal mono-
logue) from 82 impaired speakers (AQ: 27.0 - 99.0), including
52 Anomic, 6 Transcortical sensory, 12 Transcortical motor, 8
Broca’s, 1 Isolation, 2 Wernicke’s and 1 Global aphasia. The
training set and test set are domain- and style-matched.

2.2. Domain-mismatched datasets: CUSENT & K086

CUSENT is a large-scale read speech corpus of Cantonese. It
was developed by The Chinese University of Hong Kong [22].
The speech content consists of 5, 100 distinct sentences selected
from newspaper articles. There are 20, 378 training utterances
from 34 male and 34 female speakers, and 799 test utterances
from 4 male and 4 female speakers. The durations for training
set and test set are 19.3 hours and 0.6 hours respectively.

King-ASR-086 (K086) [23] is a commercial Cantonese
speech database, which contains read speech recordings of 87.4
hours from 136 native Cantonese speakers. The content covers
sports, science, international news, etc. 32, 264 utterances
(about 71 hours) from 55 male and 55 female speakers are
selected as training set, and 7, 754 utterances from 13 male
and 13 female speakers (about 16 hours) are selected as test set.

Task 1 features Task N features

TDNN

TDNN

......

......

BLSTM

BLSTM

......

Task 1 soft-max output Task N soft-max output......

Figure 1: The architecture of proposed MT-TDNN-BLSTM.

3. ASR system for aphasia assessment
3.1. MT-TDNN-BLSTM model

In our previous study [5], a standard DNN based ASR for
assessment was trained with limited domain-matched healthy
speech. MTL provides a potential way to use the domain-
mismatched datasets to tackle the data scarcity problem. Fur-
thermore, the advanced TDNN-BLSTM acoustic model shows

good performances in large vocabulary speech recognition sys-
tems in recent years. Hence, we propose to establish a MT-
TDNN-BLSTM based ASR system for PWA speech, as illus-
trated in Figure 1. The combined layers of TDNN-BLSTM are
shared among multiple tasks. During the training procedure,
parameters of shared hidden layers and the specific soft-max
output layer corresponding to a certain task are updated. The
total cross-entropy loss function are weighted across tasks. Re-
fer to [24] for detailed explanation of the MTL.

3.2. System Setup and Performance

Like Mandarin, Cantonese is a monosyllabic and tonal lan-
guage. Each Chinese character is spoken as a monosyllable with
a specific tone. There are a total of 13 vowels and 19 consonants
in Cantonese, from which over 600 legitimate base syllables can
be formed [20]. Each of 32 phonemes is represented by a hid-
den Markov model (HMM) with 3 emission states. Kaldi [25]
is used to train all acoustic models in this study.

A GMM-HMM acoustic model is trained beforehand for
each task to obtain state level phone alignments. The training
set for each task is detailed in section 2. The input features
used to train GMM-HMMs are 40-dimensional fMLLR features
transformed from 39-dimensional MFCC+∆+∆∆ with a con-
textual window of 7 frames. In addition to 32 basic acoustic
units, five of the most common non-content sounds appeared
in CanAB (i.e. inserted filler words, lengthened/repeated ini-
tial consonants, para-verbal sounds like laughing and sighing)
are modeled by dedicated HMMs and included as part of the
acoustic models. Subsequently, we build neural network based
ASR systems as follows:
DNN baseline [5]: A standard feed-forward DNN based ASR
system with 6 hidden layers and 1024 neurons per hidden layer
is trained to estimate the posterior probabilities of triphone
states. The acoustic features are 440-dimensional fMLLR fea-
tures with a contextual window of 11 frames. The data used to
train this system is domain-matched training set of the CanAB
corpus.
MT-TDNN-BLSTM: The TDNN-BLSTM model consists of
4 TDNN layers with 1024 neurons per layer followed by 4
pairs of forward-backward projected LSTM layers with 1024-
dimensional cells and 256-dimensional recurrent projections.
For the TDNN layers, at each time step, the number of input
contexts required to compute an output activation are [−2, 2] at
the first layer, {0} at the second layer, [−1, 1] at third and forth
layers. They are all implemented with ReLU and batchnormal-
ization [26]. The combined TDNN-BLSTM layers are shared
among three tasks of phone-level acoustic modeling trained
with training sets of CanAB, K086 and CUSENT. Each task
has an independent soft-max layer for triphone state classifica-
tion. The domain-matched CanAB is set as the primary task
with the highest weight in the loss function, while K086 and
CUSENT are set as the secondary tasks. Speech-perturbation
method is applied to augment training data three-fold, with
speed factor of 0.9, 1.0 and 1.1 [27]. The 40-dimensional
MFCCs without cepstral truncation are computed as the input
to the neural network [28]. Pitch features have been shown use-
ful to boost ASR performance on tonal language like Cantonese
[29]. In addition, i-vector based neural network adaptation has
been proved to benefit the ASR on PWA speech [8]. Therefore,
MFCCs are further appended with 3-dimensional pitch features
designed in [29] and 100-dimensional i-vectors. The appended
acoustic features are anticipated to capture pitch information of
Cantonese and handle the high speaker variability appeared in
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impaired speech. The training procedure follows exponential-
decay learning schedule from 1.5E−3 to 1.5E−4. The mini-
batch size is 64 and the number of training epochs is 4. Dropout
with the probability 0.1 is applied to improve generalization of
neural networks [30].

The performances of proposed systems in terms of SER are
evaluated on the CanAB test set (PWA speech). The language
models are syllable bi-grams trained with the orthographic
transcriptions of all training data of CanAB.

Table 1: Performances of DNN baseline system and MT-TDNN-
BLSTM system evaluated on the CanAB test set.

Acoustic model Training data (weights in loss function) SER%
DNN baseline [5] CanAB 48.08
MT-TDNN-BLSTM CanAB, K086, CUSENT (0.60, 0.30, 0.10) 38.64
MT-TDNN-BLSTM CanAB, K086, CUSENT (0.65, 0.10, 0.25) 38.74
MT-TDNN-BLSTM CanAB, K086, CUSENT (0.65, 0.25, 0.10) 38.05

Table 1 shows the overall SERs obtained by above ASR
systems. We see that the MT-TDNN-BLSTM based systems
significantly outperform the DNN baseline system, achieving
a SER reduction up to 10.03%. The noticeable SER reduction
shows the benefits of the large amount of training data as well as
the effectiveness of proposed MT-TDNN-BLSTM structure and
acoustic features. Besides, it is observed that treating the K086
as the secondary task (with submaximal weight value) performs
better than that as the tertiary task. For the MT-TDNN-BLSTM
system with the lowest SER, the SER per speaker varies greatly
from 13.54% to 92.13% due to the highly diverse types and
degree of language impairment. Across the 7 speech tasks, the
ASR system shows similar SER performance, i.e., 36.78% to
39.54%. The outputs of this recognizer will be used for the
following feature extraction procedure.

4. Feature extraction
4.1. Text features: Syllable-level embedding features de-
rived from N-best hypotheses and confusion networks

We aim at text features that can be derived from the ASR out-
put, and robust to the recognition errors as much as possible.
In previous study [5], we provided a novel approach to extract-
ing ASR-derived text features based on word embedding tech-
niques. For a given story, a compact story-level vector repre-
sentation was obtained by taking the average of all syllable vec-
tors in accordance to the 1-best ASR output of this story. The
syllable vectors were obtained from a continuous bag-of-words
model [31] trained with syllable-level transcriptions of the train-
ing set of CanAB. Two text features were designed to quantify
the degree of language impairment for each subject. Inter-story
feature was able to capture the degree of confusion among 7
produced stories by counting the number of mis-clustered story
vectors (up to 7, and normalized to the range of [0, 1]). If an
aphasic subject produces mostly function words but few topic-
specific content words, the value of inter-story feature would be
high. Intra-story feature was defined as the cosine similarity
between the story vector of an impaired speaker and the mean
story vectors (with the same topic) of unimpaired ones, measur-
ing the discrepancy between impaired and unimpaired content.

In present study, we propose to incorporate rich representa-
tion of ASR output (i.e. N-best hypotheses and confusion net-
works) into the computation of story vectors instead of using
the straightforward 1-best ASR output. It is expected that the
rich representation could provide a larger set of hypotheses to
facilitate more robust story-level vector representations from er-
roneous ASR outputs.

4.1.1. Using N-best hypotheses for story vector computation

The output of an ASR system is typically the best-matching
word sequence with the highest sentence-level posterior prob-
ability given an input speech utterance. In addition, the sys-
tem can generate N-best candidates for each input utterance
by ranking the combined acoustic model and language model
(AM+LM) scores. In this study, after obtaining the 10-best hy-
potheses for each story, we propose to compute the new story-
level vector representation by taking the following steps:
Step 1. For each story, 10 story vectors V1,V2, · · · ,V10 are
computed by averaging syllable vectors appeared in 10-best hy-
potheses respectively.
Step 2. Compute the AM+LM scores C1, C2, · · · , C10 for 10-
best hypotheses using the function nbest-to-linear im-
plemented in Kaldi. For each decoding hypothesis, its confi-
dence score (weight) is computed by:

wi =
Ci

C1 + C2 · · ·+ C10
, i = 1, . . . , 10; (1)

Step 3. Compute the final weighted story vector as:

V10−best = w1V1 + w2V2 + · · ·+ w10V10. (2)

4.1.2. Using confusion networks for story vector computation

Confusion networks (CNs) are direct linear graphical represen-
tations of most likely hypotheses in the lattice. Compared with
the N-best lists, CNs contain more word candidates and sen-
tence hypotheses. Figure 2 shows an example of CNs.

jat:0.572

jau:0.424

e:0.003

go:1.000

EPS:0.992

go:0.005

jau:0.003

EPS:0.997

go:0.003 siu:1.000

Figure 2: Example of confusion networks for a speech segment.

Each edge represents a syllable with its associated posterior
probability. At each position, the sum of posterior probabili-
ties of candidate syllables is equal to 1.0. “EPS” in the CNs
represents a NULL hypothesis. In present study, we adopt
the advanced method implemented in the Kaldi (by function
lattice-mbr-decode) [32] to generate CNs. The story
vectors combined with CNs are computed by the following pro-
cedures:
Step 1. Obtain the CNs from lattices for all stories. Let L
represents the length of position segments in CN for a story and
N1, · · · , NL denote the number of candidate syllables at each
position. For the lth position segment, the candidate syllables
are ω1,l, · · ·ωNL,l with posterior probabilities p1,l, · · · pNL,l;
Step 2. For each story, the story vector is computed as the
weighted average of all candidate syllable vectors appeared in
the corresponding CN. The weight for each candidate sylla-
ble corresponds to the posterior probability generated from CN.
The final story vector is computed using the following equation:

Vcn =

∑L
l=1

∑Nl
i=1 pi,lV (ωi,l)

L− LEPS
, (3)

where V (ωi,l) indicates the syllable vector of ωi,l. It is noted
that the syllable vector for “EPS” is set as a zero vector and
LEPS represents the number of “EPS” with posterior proba-
bility of 1.0 in CNs. They are removed when computing the
averaged story vector.

After obtaining the story vectors derived from N-best hy-
potheses and CNs, the inter-story and intra-story features are
computed following the methods in previous study [5]. We omit
the details here due to the space limitation.
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4.1.3. Text features of impaired speech: the effect of ASR

As shown in Table 2, we divide the 82 aphasic speakers into
two groups with the SER below 50% and over 50%. For each
group, we compare the average deviations of text features
computed based on 1-best hypothesis, 10-best hypotheses and
CNs from those based on manual transcriptions respectively.
For the inter-story feature, a positive deviation means the
number of mis-clustered story vectors tend to be over-estimated
based on the ASR outputs. For the intra-story feature, a neg-
ative deviation indicates over-estimated discrepancy between
impaired and unimpaired content. Both of them would lead to
the over-estimation of impairment severity.

Table 2: Deviations of text features computed from various ASR
outputs from those from manual transcriptions in two groups.

Acoustic Model DNN baseline [5]
SER SER ≤ 50% SER > 50%
No. of speakers 49 33
Story vector derived from 1-best
Deviation of
feature values

inter-story 0.020 0.182
intra-story 0.002 −0.092

Acoustic Model MT-TDNN-BLSTM
SER SER ≤ 50% SER > 50%
No. of speakers 56 26
Story vector derived from 1-best 10-best CNs 1-best 10-best CNs
Deviation of
feature values

Inter-story 0.003 0.003 0.000 0.104 0.099 0.094
Intra-story 0.002 0.005 0.010 −0.078 −0.072 −0.062

As a consequence of the improvement of ASR performance
with MT-TDNN-BLSTM, the number of impaired speakers in
low-SER group increases from 49 to 56. For the text features
computed from 1-best ASR output, it is shown that almost all
deviations for two groups decrease significantly using the MT-
TDNN-BLSTM system compared with DNN baseline. This
may benefit from more reliable ASR outputs produced by the
MT-TDNN-BLSTM system. For the group of high-SER sub-
jects, the text features derived from both 10-best hypotheses
and CNs deviate less than those from 1-best hypothesis. Also,
the CNs perform better than the 10-best hypotheses. For sub-
jects with low SER, the average deviation of inter-story feature
derived from CNs is smaller than that from 1-best hypothesis,
but the deviation of intra-story feature is slightly higher. Over-
all speaking, using the MT-TDNN-BLSTM based recognizer
and weighted story vectors computed from rich representation
of ASR output can improve the robustness of text features to the
ASR errors. This would alleviate the over-estimation of impair-
ment severity, especially for impaired subjects with poor ASR
performance.

4.2. Acoustic features: Supra-segmental Duration

Supra-segmental duration features derived from the ASR-
generated time alignment were shown to provide additional
benefit to the assessment system [5]. Based on previous stud-
ies on acoustical analysis of aphasia [4, 33], we defined 13 du-
ration features that were related to fluency, speaking rate, etc.
It is believed that the time-alignment produced by MT-TDNN-
BLSTM system should be more accurate than that produced by
the DNN baseline system. The correlations between duration
features generated from MT-TDNN-BLSTM system and the
AQ values indeed increase significantly than before. In order
to select the most effective features and reduce the feature di-
mension for the subsequent regression process, we jointly con-
sider the ranking order of 13 candidate features suggested by
the LASSO regression [34, 35] and the correlation between each
feature and the AQ value. Finally, the following 4 duration fea-

tures are selected:
Average duration of speech segments – Average duration of
all speech segments, computed over all stories from the subject.
Each speech segment is the part between two successive silence
segments (> 0.5s);
Average syllable count per speech segment – The number of
syllables per speech segment is computed and averaged over all
stories from the subject;
Ratio of silence segment count to syllable count – The ratio
of the number of silence segments to the number of syllables in
all stories from the subject;
Proportion of fillers per speech segment – The proportion of
the number of fillers per speech segment in all stories from the
subject.

5. Automatic prediction of AQ
Automatic prediction of AQ is framed by performing regression
on the feature vectors. Two regression models are built with
the approaches of linear regression (LR) and random forest
(RF) respectively. The leave-one-out cross validation strategy
is adopted. In each fold of validation, the 6-dimensional
feature vector from one of the subjects is reserved as test data
and the remaining feature vectors are used for training. The
feature vector consists of 2-dimensional text feature vector and
4-dimensional acoustic feature vector. Text features derived
from 1-best hypothesis, 10-best hypotheses and CNs of ASR
systems are evaluated separately. Table 3 shows the Spearman
correlations between the predicted AQ (AQp) and the reference
AQ (AQr) values obtained from the two regression models.

Table 3: Correlations of predicted AQ with reference AQ values.

Text features derived from LR RF
1-best of DNN baseline [5] 0.816 0.839

1-best of MT-TDNN-BLSTM 0.819 0.839
10-best of MT-TDNN-BLSTM 0.825 0.841

CNs of MT-TDNN-BLSTM 0.827 0.842

Considering the case of using 1-best ASR output to extract
text features, under the LR model, it is found that the MT-
TDNN-BLSTM based ASR system performs better on AQ pre-
diction than the DNN baseline system. It is because the auto-
mated transcriptions and time alignment information from MT-
TDNN-BLSTM system are more reliable. The results also show
that the proposed robust text features derived from 10-best hy-
potheses and CNs can provide additional benefit to the AQ pre-
diction. The largest gain is obtained by using the CNs for the
computation of text features. The best prediction result shows
a correlation of 0.842 based on the RF regression model. With
this model, 29.3% (24/82) of the aphasic subjects have the pre-
diction errors |AQp − AQr| ≤ 3.0. There are 53.7% (44/82)
and 75.6% (62/82) subjects have the prediction errors smaller
than 6.0 and 10.0 respectively.

6. Conclusions
This paper presented an investigation on automatic speech as-
sessment for PWA using the MT-TDNN-BLSTM based ASR
system. Until this study, we have made good progress in im-
proving the ASR performance on impaired speech and the ro-
bustness of text features. The performance of our assessment
system is enhanced accordingly. In the future, we may also take
the syntactic impairment of aphasic speakers into consideration
in the assessment system.
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