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Abstract
Multilingual grapheme-to-phoneme (G2P) models are useful
for multilingual speech synthesis because one model simulta-
neously copes with multilingual words. We propose a G2P
model that combines global character vectors (GCVs) with bi-
directional recurrent neural networks (BRNNs) and enables the
direct conversion of text (as a sequence of characters) to pro-
nunciation. GCVs are distributional, real-valued representa-
tions of characters and their contextual interactions that can be
learned from a large-scale text corpus in an unsupervised man-
ner. With the flexibility of learning GCVs from plain text re-
sources, this method has an advantage: it enables monolingual
G2P (MoG2P) and multilingual G2P (MuG2P) conversion.

We experiment in four languages (Japanese, Korean, Thai,
and Chinese) with learning language-dependent (LD) and
language-independent (LI) GCVs and then build MoG2P and
MuG2P models with two-hidden-layer BRNNs. Our results
show that both LD- and LI-GCV-based MoG2P models, whose
performances are equivalent, achieved better than 97.7% sylla-
ble accuracy, which is a relative improvement from 27% to 90%
depending on the language in comparison with Mecab-based
models. As for MuG2P, the accuracy is around 98%, which is
a slightly degraded performance compared to MoG2P. The pro-
posed method also has the potential of the G2P conversion of
non-normalized words, achieving 80% accuracy in Japanese.
Index Terms: G2P, BRNN, GloVe, text analysis, multilingual
text-to-speech synthesis

1. Introduction
A grapheme is a character in Chinese or a number of charac-
ters in Thai that represent a sound (phoneme). The mapping
between graphemes and phonemes is many-to-many. In text-to-
speech (TTS) synthesis systems [1][2], grapheme-to-phoneme
(G2P) models are critical because they describe the pronunci-
ation of the input text. G2P models generate pronunciations,
which are essentially based on the words, by referring to pro-
nunciation dictionaries incorporated in the systems or by apply-
ing statistical/rule-based letter-to-phoneme conversion or their
combination. Depending on particular languages, further ef-
forts might be necessary to generate pronunciations, e.g., iden-
tifying phrase boundaries in Korean, determining the pronun-
ciations of repetition signs in Thai, processing the devoicing
of some vowels in Japanese, etc. If the input text is not nor-
malized, such non-normalized words as numbers are read based
on their context [3]. In the Japanese example shown in Fig.
1, for instance, the first “1” means “one”, and the second “1”
means “ten”. Therefore, G2P conversion for TTS must consider
a word’s context.

To the best of our knowledge, in multilingual TTS systems,
one G2P model basically works for one language to achieve
high accuracy, although multilingual (Mu) G2P models exist
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Figure 1: Examples of grapheme and phoneme alignment

for low-resource languages [4]. MuG2P models (one model for
many languages) are useful for multilingual TTS since the input
text may be mixed in two or more languages. A challenge to
MuG2P is that some words are shared by several languages like
Chinese and Japanese (Fig. 1). This problem may be alleviated
by learning the pronunciations of words in context.

A statistical-based G2P is comprised of three steps:

• aligning training data: graphemes→ phonemes [5];

• modeling: training a model by the training data [6]–[17];

• decoding: finding the most likely phonemes (pronuncia-
tion) given the model.

The task of aligning graphemes → phonemes is a problem of
inducing links from graphemes to phonemes related by pronun-
ciation [5]. The links from characters to phonemes (indicated
by → in Fig. 1) may be nonlinear, as shown in Fig. 1 (cross
links in Thai). Hereafter, the term “sound tag” (indicated by
circles in Fig. 1) stands for a list of phonemes that is linked to
a character. If no link exists, the character is denoted as a “null
phoneme” by ϵ. As a result, alignment enables a character to
have a sound tag that includes one or more phonemes or ϵ.

This paper describes a G2P model that combines global
character vectors (GCVs) with bi-directional recurrent neural
networks (BRNNs) [18]. GCVs are distributional, real-valued
representations of characters and their contextual interactions,
learned by GloVe [19] from a large-scale text corpus in an unsu-
pervised manner. Multi-stack BRNNs are suitable for sequence
modeling [20]. We show that GCV-based models outperform
conventional Mecab-based models [21] and provide the flex-
ibility to build multilingual G2P models and pronounce non-
normalized words with rather good accuracy.

2. Related work
Using space vector models in TTS to represent word and let-
ter types was previously proposed [23][24]. Both methods used

Interspeech 2018
2-6 September 2018, Hyderabad

2823 10.21437/Interspeech.2018-1626

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1626.html


matrix factorization methods with slim singular value decom-
position (SVD) for generating a low-dimensional representation
of letters [23]. We employed GloVe [19] to learn GCVs from a
large-scale text corpus. GCVs directly capture the global corpus
statistics based on a log-bilinear regression model.

A typical G2P approach uses joint n-gram models [6][7]. A
weighted finite state transducer (WFST) is usually used to im-
plement such a n-gram model [8]. In the literature, since G2P
resembles a classification or machine learning problem, any of
the following methods can be used: a maximum entropy clas-
sifier [9], a translation problem implemented in a sequence-to-
sequence fashion [10], or a general machine learning problem
with conditional random fields (CRF) [11][21] and HMM [13].
Neural network approaches are also used to solve G2P problems
[14][15][10]. Hybrid models are generally effective. For exam-
ple, Hahn et al. [16] combined n-gram models with decision
tree models, and Wu et al. [17] combined them with CRF mod-
els. Rao et al. [15] combined a basic n-gram with BRNNs with
a long short-term memory (LSTM) scheme. In the work, we
combine GCVs with BRNNs to build G2P models that achieve
high performance in multiple languages. GCVs implicitly rep-
resent n-gram models because they capture the global corpus
statistics, including character interactions within a contextual
window.

In contrast to our previous work [22], this work extends
global syllable vectors (GSVs), which are language-dependent,
to global character vectors (GCVs), which can be language-
independent, and further explores monolingual G2P in multiple
languages and multilingual G2P. In practice, using GCVs in-
stead of GSVs no longer requires syllable breaking in Thai or
word segmentation in Japanese.

3. Approach outline
Figure 2 diagrams GCV-BRNN-based G2P models, including
model building (thin blue arrows) and G2P conversion (thick
gray arrows). Model building consists of two steps. First, we
learn a GCV table from a large-scale text corpus in an unsu-
pervised manner using GloVe [19]. Second, we model the re-
lationships between characters and sound tags by BRNNs in
a supervised way, given an alignment of the training data be-
tween characters and sound tags. GCVs (encoding text by ta-
ble search) are the input to BRNNs connected in the order of a
stream of characters.

G2P conversion becomes the process of using GCVs to en-
code text by a table search followed by BRNN-based decoding
GCVs to sound tags in a sequence-to-sequence manner.

3.1. GloVe-based learning GCVs

We used GloVe [19] to learn GCVs from a large-scale text cor-
pus in an unsupervised manner. A large-scale text corpus gath-
ers potential characters and their contextual interactions in the
target languages. GloVe then uses the statistics of the character-
character co-occurrences in the text corpus to learn the GCVs
based on a global log-bilinear regression model [19], more par-
ticularly, by minimizing the following cost function [19]:

J =
N∑

i,j=1

q(xij)(c
T
i c̃j + bi + b̃j − logxij)

2, (1)

where N is the number of unique characters, xij indicates
the co-occurrence frequency of characters i and j, q(xij) is
a weighting function to avoid the frequent characters over-
weighted [19], bi and b̃j are biases, and ci and c̃j are space
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Figure 2: Schematic diagram of G2P models combining GCVs
learned from a large-scale text corpus with BRNNs

vectors to be learned. Note that ci and c̃i equivalently represent
the ith character but with different initial values. As a result,
ci + c̃i is assigned to the ith character as its GCV.

We learn language-dependent (LD) GCVs and language-
independent (LI) GCVs by setting up an appropriate text corpus.
Hereafter, LDC stands for LD-GCV and LIC for LI-GCV.

3.2. BRNN-based decoding GCVs to sound tags

G2P conversion is performed by BRNN-based prediction from
sequences of GCVs (encoding text) to sequences of sound tags.
First, BRNNs are trained in a supervised way to learn the re-
lationships between GCVs instead of characters and sound tags
represented by one-hot vectors. We employed the standard mul-
ticlass cross-entropy as an objective function to train BRNNs
with two hidden layers for this purpose, given an alignment of
the training data between characters and sound tags. Eqs. (2) to
(6) formally express the neural networks [20]:

h
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yj = softmax(U→h
→(2)
j + U←h

←(2)
j + c), (6)

where 1 ≤ i ≤ 2 and arrows → and ← respectively indicate
forward and backward directions. xj stands for the jth charac-
ter’s GCV, j = 1, ..., n (the number of a sentence’s characters),
h is the hidden variables, W , V , and U are the weight matri-
ces, b and c are the bias vectors, and f(x) is the tanh function.

At the output layer, yj gives the probabilities of all the
sound tags for the jth character. A sound tag is then chosen
for a character, basically using argmax(yj), i.e., top-1.

4. Experimental setup
We evaluated our proposed method in Thai, Japanese, Korean,
and Chinese, focusing on the four aspects below:

• effectiveness of LIC for G2P in multiple languages, in-
cluding one LIC-BRNN model in each language and one
LIC-BRNN model for two or three languages;
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• equivalence of LIC- and LDC-based G2P models in per-
formance;

• robustness of LIC-BRNN G2P when training data are
limited;

• G2P conversion of non-normalized words.

Table 1 tabulates the datasets (including sentences and isolated
words) used for the supervised training and the evaluation. The
training, development, and test sets are disjointed. Additionally,
we collected a test set (5k Japanese sentences) to evaluate G2P
with non-normalized text. Every sentence has one or more non-
normalized words (digit or alphabet strings).

Table 1: List of training, development, and test sets

Lang. Training (sen.+word) Devep. (s+w) Test (s+w)

Thai 7.5k+38k 1k+1k 1k+1k
Japanese 65k+0 1.8k+0 1.5k+0
Korean 18k+93k 1k+1k 1k+1k
Chinese 44k+448k 3k+0 3.7k+0

4.1. GCV learning

We used a large-scale text corpus of about 500 million charac-
ters encoded in UTF-8 from the four languages to learn the LDC
and LIC with a fixed 20-character window. We learned several
GCVs with vector sizes of 50, 100, 200, 300, or 512. There
were 13,700 distinctive characters in total.

4.2. Alignment between characters and sound tags

The datasets (corpus) in Table 1 had word-level pronunciation
checked by native speakers. An alignment of the words between
characters and sound tags is needed for training the BRNNs. In
Chinese and Korean, this step is straightforward since a charac-
ter has a sound. In Thai and Japanese, constraint-based align-
ment [14][25] is used in the following semi-automatic and in-
teractive manner:

• Construct sets of sound tags for characters and count the
occurrences of character-sound tags in the corpus.

• Align a word between characters and sound tags by
building a tree with nodes as character-sound tags.

– Grow a tree using the sets of character-sound tags.

– Prune it using the word’s sound tags.

– Define a new character-sound tag and add it to the
sets of sound tags if a tree can’t be built.

• Select such a path as the alignment that maximizes the
sum of occurrences of the word’s sound tags.

We obtained 623 distinctive sound tags in Thai, 2197 in
Japanese, 1916 in Korean, and 1452 in Chinese. To restore the
phonemes after the G2P conversion and determine the syllables
from a sequence of phonemes in Thai, we added labels to the
consonants to indicate their positions (first, next, and last) in a
syllable and the vowels with cross links (Fig. 1). All the tone
marks take sound tag ϵ in our experiments.

The sets of sound tags are not optimal because the
constraint-based alignment is simplified. Further improvement
is possible.

Table 2: Results of GCV-BRNN-based G2P conversion evalu-
ated in character-to-sound-tag accuracy (%) with GCV size 300
for MoG2P and 512 for MuG2P: OOT indicates out of sound
tags that were not used in the language (in percentage terms).

MoG2P MuG2P-b MuG2P-t
Lang. LDC LIC LIC OOT LIC OOT

Japanese 98.77 98.74 98.05 0.001 n/a
Chinese 99.32 99.37 98.69 0.008 98.83 0.025
Korean 97.74 97.94 97.50 0.018

Thai 99.18 99.16 n/a 98.97 0.0

Table 3: Comparison of GCV-based G2P with Mecab-based
G2P by relative improvements in syllable and word error rates:
MoG2P models were used in evaluation.

Syllable error rate (%) Word error rate (%)
Lang. Mec-1 LIC-1 Improve Mec-1 LIC-1 Improve
Thai 3.89 2.00 48.50% 3.97 1.73 56.51%

Japanese 2.09 1.31 37.28% 2.05 1.68 17.78%
Korean 24.2 2.25 90.69% 29.5 2.88 90.25%
Chinese 0.82 0.63 27.0% 1.26 0.91 27.27%

4.3. Network training

We trained the BRNNs with the following hyperparameters:
• number of units of input layers: GCV size;
• number of units of output layers: number of sound tags;
• number of hidden layers: 2;
• number of hidden units: 50, 100, 150, or 200;
• used a stochastic gradient descent with a fixed momen-

tum (0.9) with a small learning rate (0.0001);
• size of a mini-batch: 20 samples (sentences or words);
• maximum epoch: 2000.

We used the models with the best performance for the develop-
ment set as the final models to be evaluated.

4.4. Mecab-based baseline for comparison

Mecab [21], a CRF-based morphological analyzer, is widely
used in TTS for the morphological analysis of text and G2P by
referring to a dictionary [1]. For comparison, we chose Meacb
as baseline, partly because our training datasets have part-of-
speech tags and word pronunciation suited for training Mecab-
based G2P models for high performance. We used the same
datasets in Table 1 to build Mecab-based G2P models.

4.5. List of G2P model symbols

We trained the following G2P models in our experiments:
• MoG2P: monolingual G2P each with LDC and LIC;
• MuG2P-b: bi-lingual G2P in Japanese and Chinese;
• MuG2P-t: tri-lingual G2P in Chinese, Korean, and Thai;
• Mec-x: Mecab-based G2P models trained by the sam-

ples with x× the size of the datasets;
• LIC-x: LIC-MoG2P models trained by the same samples

as used in training Mec-x.
x takes 1 for all the four languages but 1

2
, 1
4

, and 1
8

in Thai,
Japanese, and Korean. Note that the same development and test
sets were used throughout the experiments.
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Table 4: Results of MoG2P conversion of non-normalized text:
Japanese LIC-MoG2P in Table 2 was used in test.

Japanese Number of words/word error rate (%)

Non-normalized 13662/20 .53
Common words 69458/1.958
Total words 83120/5.012
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Figure 3: Illustration of robustness of GCV-based models with
limited training data in comparison with Mecab-based models

5. Results
The experimental results are shown in Tables 2–4 and Figs. 3–5.
BRNNs have 100 hidden units, and the GCV size is 300, except
when clearly noted otherwise in the item description.

The following observations are based on our results:

• MoG2P models achieved very high performance:
99.18% character-to-sound tag accuracy in Thai, 98.77%
in Japanese, 97.74% in Korean, and 99.32% in Chinese
(Table 2). Compared to the Mecab-based method, our
proposed method got significant relative improvement in
the syllable error rates from 27% to 90%, depending on
the individual language, and from 17.7% to 90% in the
word error rates (Table 3).

• The MuG2P models also achieved high performance,
more than 97.5% character-to-sound tag accuracy in all
four languages, but it was slightly degraded compared to
MoG2P (Table 2). The degradation was caused by the
large size of the BRNN outputs: 3721 units in MuG2P-
t and 3401 in MuG2P-b. Even though we changed the
number of hidden units from 100 to 150, unfortunately,
no significant improvement was obtained.

• A few out of sound tags (OOTs) exist in MuG2P (Ta-
ble 2). However, for MuG2P-t (Chinese, Korean, and
Thai), the OOTs are less than 0.03% depending on the
language. In the case of MuG2P-b (Japanese and Chi-
nese), the OOTs are less than 0.008%. These are very
positive results. In fact, some words and even isolated
sentences are not distinctive in Chinese and Japanese.
OOT issues can be handled by choosing sound tags from
the top-n based on individual languages, instead of the
top-1, as in the experiments.

• The GCV-based G2P is more robust than Mecab-based
G2P, especially when the training data are limited (Fig.
3). The latter refers to pronunciation dictionaries, and
thus it is sensitive to the words available in the training.

• LIC- and LDC-based G2P models have equivalent per-
formances (Fig. 4). In model training, some hyperpa-
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Figure 4: Illustration of equivalence of LIC- and LDC-based
G2P in performance using BRNNs with 100 hidden units
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Figure 5: Effects of varied GCV size and number of hidden units
on resultant MoG2P performance

rameters can be fixed. 100 hidden units are adequate for
both LDC- and LIC-BRNN-based G2Ps (Fig. 5). As for
the GCV size, our experiments indicate that 300 is ade-
quate for MoG2P models, but 512 is better for relatively
easy training of the MuG2P models.

• Around 80% word accuracy is achieved by the MoG2P
conversion of non-normalized words in Japanese (Table
4). An informal analysis of the results indicates that G2P
for numbers representing dates (year, month, and day)
are basically correct. Frequent mistakes are related to
unseen abbreviations (e.g., SPAM) and some numbers
longer than three characters where the G2P conversion
sometimes omits “thousand” or “hundred” in the middle
of the numbers.

We believe that the performance can be further improved using
more training samples in mixed languages and sufficient non-
normalized words in context. Further work is needed.

6. Conclusions
We showed that, as features, GloVe-based global character
vectors (GCVs) successfully achieved G2P conversion with
deep learning in multiple languages. GCVs, either language-
dependent or language-independent, can be learned from plain
text corpora in an unsupervised way. The proposed method out-
performed the conventional Mecab-based method and has the
flexibility to implement a multilingual G2P to enable one model
to cope with several languages. This is motivated by a desire to
relatively easily implement multilingual text-to-speech [26].

Future work will improve our multilingual G2P mod-
els with non-normalized samples and evaluate our proposed
method on common data for comparison with other approaches.
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