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Abstract

The majority of existing speech emotion recognition research
focuses on automatic emotion detection using training and test-
ing data from same corpus collected under the same conditions.
The performance of such systems has been shown to drop sig-
nificantly in cross-corpus and cross-language scenarios. To ad-
dress the problem, this paper exploits a transfer learning tech-
nique to improve the performance of speech emotion recogni-
tion systems that is novel in cross-language and cross-corpus
scenarios. Evaluations on five different corpora in three differ-
ent languages show that Deep Belief Networks (DBNs) offer
better accuracy than previous approaches on cross-corpus emo-
tion recognition, relative to a Sparse Autoencoder and Support
Vector Machine (SVM) baseline system. Results also suggest
that using a large number of languages for training and using
a small fraction of the target data in training can significantly
boost accuracy compared with baseline also for the corpus with
limited training examples.
Index Terms: cross-corpus, speech, emotion recognition, Deep
Belief Networks

1. Introduction
In recent years, speech emotion recognition has received in-
creasing interest. Automatic Speech emotion recognition fo-
cuses on using linguistic and acoustic attributes as input fea-
tures and machine learning models as classifiers to classify the
emotions of the speaker [1]. These systems achieve promising
results when training and testing are performed from the same
corpus [2,3]. However, for real applications, such systems have
been demonstrated not to perform well when speech utterances
from different languages and different age groups, in quite dif-
ferent conditions, are combined [4].

At present, various emotional corpora exist, but they are
dissimilar in terms of the spoken language, type of emotion (i.e.,
naturalistic, elicited, or acted) and labelling scheme (i.e., di-
mensional or categorical) [5]. There are more than 5,000 spoken
languages around the world, but only 389 languages account for
94% of the world’s population1. Even for 389 languages, very
few adequate resources (speech corpus) are available for lan-
guage and speech processing research. This means that research
in language and speech analysis must confront the problem of
data scarcity for many languages. This imbalance, variation, di-
versity, and dynamics in speech and language databases means
that it is almost impossible to learn a model from a single corpus
and then expect it to be effective in practice in general.

1https://www.ethnologue.com/statistics

In automatic speech emotion recognition, most studies fo-
cus on a single corpus at a time, without considering the per-
formance of model in cross-language and cross-corpus scenar-
ios. However, ever since transfer learning has been applied to
cross-domain classification and pattern recognition problems,
interest in applying it to cross-corpus emotion recognition has
been growing. Transfer learning focuses on adapting knowl-
edge from available auxiliary resources to transfer this learning
to a target domain, where a very few or even no labelled data is
available [6, 7].

Deep neural network (DNN) based transfer learning has
recently improved image classification by using a very large
dataset as source domain and small data as a target domain [8].
Inspired by this success, deep learning based transfer learning
has recently been used for speech analysis. However, the exist-
ing research has focused on basic DNNs. The impact of using
models like Deep Belief Networks (DBNs), which have strong
generalisation power and are therefore suitable for cross-corpus
emotion recognition, has not been thoroughly explored. A few
studies have explored DBNs for speech emotion recognition
(e.g., [9, 10]) and numerous studies focus on DBNs for features
extraction [11–13] from speech signal. However, transfer learn-
ing using DBNs is very rare. Furthermore, how to maximise the
transfer learning performance for cross-corpus/cross-language
emotion recognition still needs to be explored further.

In this study, we address the above challenges. We inves-
tigate DBNs for transfer learning over five widely-used emo-
tional speech databases. By using the experimental results from
various scenarios, we indicated how a large gain in accuracy
comparable to baseline can be achieved using transfer learning
technique for cross-corpus emotion recognition.

2. Related Work
Although cross-language and cross-corpus speech emotion
recognition is an interesting problem, relatively few studies
have addressed this topic. Existing studies have mostly studied
the preliminary feasibility of cross-corpus learning and pointed
to the need for further in-depth research. For example, Schuller
et al. [5] used six different corpora to analyse cross-corpora
emotion recognition using Support Vector Machine (SVM) and
highlighted the limitations of current systems for cross-corpus
emotion recognition. Eyben et al. [14] used four corpora to eval-
uate some pilot experiments on cross-corpus emotion recogni-
tion while using SVM. They used three datasets for training
and a fourth for testing, and showed that the cross-corpus emo-
tion recognition is feasible. To explore the universal cues of
emotions across languages, Xia et al. [15] investigated cross-
language emotion recognition for Mandarin vs. Western lan-
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guages (i.e., German, and Danish). The authors focused on
gender-specific speech emotion recognition and achieved the
classification rates higher than the chance level but less than
baseline accuracy. Albornoz et al. [16] developed an ensemble
SVM for emotion detection with a focus on emotion recognition
in unseen languages.

Deep learning techniques have been widely used for trans-
fer learning in speech recognition but only basic DNN mod-
els have been utilised so far. Lim et al. [17] proposed cross-
acoustic transfer learning framework by using DNNs. The au-
thors trained a model on a large data of speech and use it for
sound event classification. After a series of experiments, the
results showed that the cross-acoustic transfer learning can sig-
nificantly enhance the sound event classification rate. In [18],
authors used a single DNN for speaker and language recogni-
tion with a large gain on performance by training the model
on speech recognition data. These studies exploited the mod-
els that have good learning abilities so that the learned features
are transferable to enable model adaptation regarding the target
domain.

In this paper, we use Deep Belief Networks (DBNs) for
transfer learning speech emotion. The key reason for employing
DBN is its power of generalisation, which is not present in other
DNN models [19]. Because, the building block of DBNs (i.e.,
RBMs) are universal approximators, and they are very power-
ful to approximate any distribution [20]. Intuitively, for cross-
corpus and cross-language emotion recognition, the generalisa-
tion power of a model is crucial. In addition, DBN can learn
more powerful and effective discriminative long-range of fea-
tures [21] that have been shown to help in speech-related prob-
lems [22].

Apart from DNNs, researchers have also used interesting
deep architectures for transfer learning. In [23], the authors fo-
cused on using Progressive Neural Networks to transfer knowl-
edge for three paralinguistic tasks, i.e., emotion, speaker, and
gender detection. Progressive Networks are useful for conduct-
ing multitasking in a network, however, we focus on a single
task of emotion recognition as speaker and gender recognition
are not the focus of this paper. Zong et al. [24] proposed a
domain-adaptive least-squares regression (DaLSR) model for
cross-corpus speech emotion recognition. They used three
datasets for the evaluations and found that DaLSR can achieved
better results than other models like SVM. They did not focus
on achieving results higher than the baseline accuracy. Sim-
ilarly, Deng et al. [25] used sparse autoencoders for feature
transfer learning to improve the performance of speech emo-
tion recognition. They used six standard databases and trained
a single-layer sparse autoencoder for discovering knowledge
from the target domain, and then apply these discovered rep-
resentations to the source domain for reconstruction of class-
specific data. Experiments using reconstructed data for clas-
sification improved the performance of the model for emotion
recognition task.

3. Experimental Setup
3.1. Speech Databases

To investigate the performance of DBN for cross-corpora and
cross-language emotion recognition, we selected five publicly
available and highly popular corpora which have maximum di-
versity in languages. These databases are annotated differently,
therefore, one of the only consistent ways to investigate transfer
learning is by considering the binary positive/negative valence

classification problem. We adopt the binary valence mapping
per emotion category from [5,25,31]. The names of the datasets
used in our experiments and their categorical mappings to bi-
nary valence classes are provided in Table 1. These databases
were chosen to span a variety of languages.

3.2. Speech Features

In this study, we use eGeMAPS feature set, which is a widely
used reference feature set for speech emotion recognition stud-
ies [23]. The feature set includes Low-Level Descriptor (LLD)
features of the speech signal which are described most relevant
to emotions by Paralinguistic studies [31]. The eGeMAPS fea-
ture set contains 88 features including frequency, energy, spec-
tral, cepstral, and dynamic information. The overall compo-
nents are the arithmetic mean and coefficient of variation of 18
LLDs, 6 temporal features, 4 statistics over the unvoiced seg-
ments, 8 functionals applied to loudness and pitch, and 26 addi-
tional dynamic and cepstral components.

3.3. Deep Belief Networks

DBNs are very popular deep architectures that consist of the
stack of Restricted Boltzmann Machines (RBMs) to make a
powerful probabilistic generative model by using layer-wise
training in a greedy manner. RBM is an undirected stochas-
tic neural network consisting of a visible layer, a hidden layer,
and a bias unit. Each visible unit of the visible layer is fully
connected to hidden units in the hidden layer, and the bias is
connected to all the visible units and the hidden units. There is
no connection between visible to visible and between hidden to
hidden units. RBMs can also be used as classifiers. They are
trained on the joint distribution of input data and correspond-
ing labels, then the label is assigned to the new input which has
the highest probability under the model. The joint distribution
between visible layer (v) and hidden layer (h) is given by [32]:

P (v, h) =
1

Z
exp(−E(v, h)) (1)

where Z represents the normalisation constant and E(v, h)
is an energy function which is defined as:

E(v, h) = −
D∑

i=1

k∑

j=1

Wijvihj −
D∑

i=1

bivi −
k∑

j=1

ajhj (2)

where vi and hi are the binary states of visible and hidden units.
Wij represents the weights of connections between hidden and
visible nodes. bi and aj are the bias terms for visible and hidden
units respectively. The conditional probabilities for the visible
and hidden units are given by the following equations:

P (vi = 1|h) = g
(
bvi +

∑

j

hjWij

)
(3)

P (hj = 1|v) = g
(
bhj +

∑

i

viWij

)
(4)

where g is the sigmoid function:

g(x) =
1

1 + e−x
(5)

An RBM is pre-trained for the maximisation of data log-
likelihood logP (v). The stack of generatively pre-trained
RBMs constitutes a powerful DBN that can be discriminatively
fine-tuned to improve performance. Weight initialisation with
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Table 1: Corpora information and the mapping of class labels onto Negative/Positive valence.

Corpus Language Age Utterances Negative Valance Positive Valance References

FAU-AIBO German Children 18216 Angry, Touchy, Emphatic,
Reprimanding

Motherese, Joyful, Neutral,
Rest [26]

IEMOCAP English Adults 5531 Angry, Sadness Neutral, Happy, Excited [27]

EMO-DB German Adults 494 Anger, Sadness, Fear, Disgust,
Boredom Neutral, Happiness [28]

SAVEE English Adults 480 Anger, Sadness, Fear, Disgust Neutral, Happiness, Surprise [29]
EMOVO Italian Adults 588 Anger, Sadness, Fear, Disgust Neutral, Joy, Surprise [30]

pre-training can help the network to avoid poor local minima
and give better discriminative results when compared with a
neural network initialised by small random weights [33]. In
this work, we also use layer-by-layer pre-training for DBN. The
description of DBNs and their training methodologies can be
reviewed in [32, 34].

During experimental work, a DBN with three RBM layers
was selected, where the first two RBMs have 1000 hidden unit
each, and the third RBM have 2000 hidden units with learning
rate of 10−3 and 500 epochs. This configuration was obtained
using cross validation experiments on validation data. The other
network parameters were chosen by following the setup in [10,
35].

4. Results
In this section, we explore various scenarios for cross-corpus
and cross-language speech emotion recognition and conduct ex-
periments to test the scenarios.

4.1. Within Corpus Scheme

In order to obtain the baseline comparison results, we com-
pare the performance of DBN with a popular approach of us-
ing sparse autoencoder with SVM for feature transfer learning
in speech emotion recognition [25]. This preliminary experi-
ment enables us to set maximum achievable baseline accuracy
when both systems are trained and tested using the data of same
corpus. For baseline experiments, 75% of randomly selected
data is used for training and remaining 25% unseen data is used
for testing. Figure 1 shows the comparison results, where DBN
outperforms sparse AE for all databases.

FAU-AIBO IEMOCAP EMO-DB SAVEE EMOVO

A
c
c
u

ra
c
y
 (

%
)

10

20

30

40

50

60

70

80

90

74.11
71.73

54.77
50.29

72.38
70.24

56.76

50.95

76.22

64.76

DBM Sparse AE+SVM

Figure 1: Comparison of baseline accuracy using DBN and
sparse AE on different databases.

4.2. Language Tests

In this experiment, we use one language dataset for training and
the remaining datasets for testing. For brevity, we just use FAU-

AIBO (German) and IEMOCAP (English) datasets for train-
ing. In order to evaluate the model on IEMOCAP, we used
two sessions out of five with two-fold cross validation because
overall data is large. The other databases are small compared
to IEMOCAP, therefore, we used them completely. Figure 2
shows the recognition rate achieved in these experiments and its
comparison with previous techniques using sparse autoencoder
and SVM (sparse AE+SVM) for cross-corpus transfer learn-
ing. When the IEMOCAP database was used for training the
DBN, we performed pairwise testing using OHM and MONT
separately for FAU-AIBO. Note that OHM and MONT are the
schools whose children have participated in data formation. It
can be noted from Figure 2 that DBN outperforms sparse AE
for all scenarios. Beyond this point, the accuracy of sparse AE
is not given, as we observe that DBNs consistently outperform
sparse AE.
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Figure 2: Comparison of language tests using DBN and sparse
AE. Figure 2a represents the recognition rate using IEMOCAP
(English) for training and other databases for testing whereas
2b shows the recognition rate using FAU-AIBO (German) for
training and other databases for testing.

4.3. Percentage of Target Data

In this experiment, we vary the percentage (10% to 80%) of
the target dataset for the training of the model. The train-
ing was performed using IEMOCAP and FAU-AIBO separately
and EMOVO, EMO-DB and SAVEE were used for testing. The
results are shown in Figure 3. The straight horizontal lines in
the figure show the baseline recognition rate for the respective
corpora. These results show that the recognition rate signifi-
cantly improves (than baseline) by including target domain data
with the training data.
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Percentage of target data with training data (IEMOCAP)
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Figure 3: Impact of using a percentage of target date with training data. Where 3a shows the training with IEMOCAP and 3b is when
training is performed using FAU-AIBO.

4.4. Multi-language Training

In this experiment, we use multiple languages jointly for train-
ing to observe whether this improves the performance of using
languages individually for training. We use both FAU-AIBO
and IEMOCAP for training and remaining for testing. We also
evaluate the model within the corpora. For IEMOCAP, we
used three sessions (plus FAU-AIBO) for training and testing
was performed using the remaining two sessions with two-fold
cross validation. Similarly, for FAU-AIBO, a two-fold cross-
validation was used, i.e., training on OHM (plus IEMOCAP)
and evaluating on MONT and the inverse.

Further, we also performed training using a leave-one-data-
out scheme. For FAU-AIBO, we have performed evaluation by
using OHM and MONT independently taking the average re-
sults. In the case of IEMOCAP, we used two sessions (with
two-fold cross validation) to evaluate the model. This performs
better than baseline and two-language training as shown in Fig-
ure 4.
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Figure 4: Comparison of baseline results and transfer learning
using FAU-AIBO+IEMOCAP and Leave-One-Out scheme.

5. Discussion
From the experiments, Leave-One-Out seems to be standing
out in-terms of obtaining the highest accuracy. This essentially
means that training the model using a large range of languages
would help learn many intrinsic features from each languages,
which can essentially help to achieve high accuracy in an un-
known language - even higher than when the same language is
used for training and testing (baseline). The performance of the
Leave-One-out (see Figure 4) on EMOVO database is a prime
example of this. Both German and English languages have two
datasets each, i.e., in a Leave-One-Out scheme there will be at
least one of these language in the training set. But for EMOVO

there will be a situation that emotions in the Italian language
are predicted simply based on emotions in German and English
language.

Another interesting aspect we learned from the experiments
that including a fraction of the target data into training can
help improve the performance and help achieve better results
than baseline. Based on our experiments, augmenting other
databases with around 20% of data (around 90 utterances in
case of EMO-DB) from the target database can help achieve
better than the baseline accuracy. However, this is worse while
using FAU-AIBO for training. Interestingly, IEMOCAP per-
forms well on EMO-DB that is in the German language as com-
pared to FAU-AIBO that is also in German. We note that FAU-
AIBO consists of children speech whereas EMO-DB database
contains adult speech.

The performance of DBN in the language test results in
Figure 2 using both IEMOCAP (English) and FAU-AIBO (Ger-
man) on target datasets is poor than the baseline. The drop in ac-
curacy is not only for the target dataset with a different language
but also for target data having similar language. From this ex-
periment, we learned that the different studio conditions, age
and language differences, and type of emotional corpus cause
drop in the performance of the model. This problem can be
addressed by previous two findings, i.e., either by training the
model with the uttrances of multiple languages or by including
a small portion of data target domain with training data.

6. Conclusions
In this paper, we investigated the performance of DBNs for
transfer learning based cross-corpus and cross-language speech
emotion recognition. In order to evaluate the feature transfer-
ence across different corpora, we performed comprehensive ex-
periments and found that DBNs outperformed sparse autoen-
coders due to its increased feature learning abilities. Also,
DBNs can learn from many training languages and improve the
baseline accuracy even also when a small fraction of target data
is included in the model while training it with a single corpus.
For practical applications, these findings would be very help-
ful to build a robust speech emotion recognition system using
data from multiple languages. Also, this would be equally use-
ful for emotion recognition in languages with very limited or no
datasets.
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