
Sparsity-Constrained Weight Mapping for Head-Related Transfer Functions
Individualization from Anthropometric Features

Xiaoke Qi1, Jianhua Tao1,2,3

1National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
2CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, China

3School of Artificial Intelligence, University of Chinese Academy of Sciences, China
xiaoke.qi@nlpr.ia.ac.cn, jhtao@nlpr.ia.ac.cn

Abstract
Head-related transfer functions (HRTFs) describe the propaga-
tion of sound waves from the sound source to ear drums, which
contain most of information for localization. However, HRTFs
are highly individual-dependent, and thus because of the differ-
ence of anthropometric features between subjects, individual-
ization of HRTFs is a great challenge for accurate localization
perception in virtual auditory displays (VAD). In this paper, we
propose a sparsity-constrained weight mapping method termed
SWM to obtain individual HRTFs. The key idea behind SWM is
to obtain optimal weights to combine HRTFs from the training
subjects based on the relationship of anthropometric features
between the target subject and the training subjects. To this
end, SWM learns two sparse representations between the target
subject and the training subjects in terms of anthropometric
features and HRTFs, respectively. A non-negative sparse model
is used for this purpose when considering the non-negative
property of the anthropometric features. Then, we build a
mapping between the two weight vectors using a nonlinear
regression. Furthermore, an iterative data extension method
is proposed in order to increase training samples for mapping
model. The objective and subjective experimental results show
that the proposed method outperforms other methods in terms
of log-spectral distortion (LSD) and localization accuracy.
Index Terms: head-related transfer functions, anthropometric
features, individualization, spatial hearing

1. Introduction
Head-related transfer functions (HRTFs) describe the propaga-
tion of sound wave in the form of reflection, and diffraction
from the sound source to ear drums through body, head and
pinna in free space [1], which contain all of localization
information for spatial auditory perception. Because of its
highly individual dependence, HRTF individualization is one
of the challenges for immersive auditory perception.

The most accurate method for HRTF individualization is by
directly measuring the impulse responses from the sound source
to the human ears [2]. However, it is greatly time consuming,
expensive, and not scalable. In light of this, several alternative
methods have been proposed, including HRTF estimation from
a small set of measurements [3], theoretical or numerical
models to attempt to approximate the complicated human
anatomy, such as spherical head model [4], snowman model [5],
structural models [6], boundary element method [7], finite-
difference time-domain method [8]. However, they require
expensive acquisition hardware and are computationally inten-
sive. Then, perceptual-based methods are proposed through
listening tests by tuning some parameters until they achieve
an acceptable spatial accuracy [9] [10]. Sunder et al. pro-
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Figure 1: The main idea in this paper.

posed an individualization method in the horizontal plane that
uses a frontal projection headphone to introduce idiosyncratic
pinna cues [11]. When considering the dependence relation-
ship between human anthropometric characteristic and HRTFs,
anthropometry-based regression methods are popular to predict
individual HRTFs [12][13][14].

Anthropometry-based methods can be categorized into sev-
eral approaches. One method constructs individual HRTFs in
full space from a small set of measurements [3], which requires
a prior measured data for a target subject. Another method
builds a direct correlation relationship between anthropometric
features and HRTFs with dimensional reduction by artificial
neural network (ANN) [12] [15], support vector regression
in conjunction with PCA, ICA or other nonlinear dimension
reduction methods [16]. Then, given the anthropometric mea-
surements of a target subject, HRTFs are obtained by passing
the model. There is another method to generate a representation
of anthropometric features between the known subjects and a
target subject, with the assumption that a given HRTF set can
be described by the same combination as the anthropometric
data [17]. Based on this study, [18] investigates the influence of
different preprocessing and postprocessing methods in terms of
log-spectral distortion (LSD), and shows that some processing
methods have a positive effect on individualization.

However, the assumption of the same combination weights
for anthropometric features as HRTFs is not completely accu-
rate, since there is still unknown for the relationship between
the human anthropometric characteristic and HRTFs. Motivated
by this observation, we propose a sparsity-constrained weight
mapping method termed SWM to individualize HRTFs based
on anthropometric features. As shown in Fig. 1, the main idea
behind SWM is to generate a representation between the target
subject and the training subjects in terms of anthropometric fea-
tures and HRTFs, respectively. By considering the nonnegative
characteristic, a nonnegative sparsity-constrained model is built
for this purpose. Then, a weight mapping model is trained to
make a mapping between the two weight vectors using a deep
neural network (DNN) method with an iterative data extension.
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Figure 2: The system architecture of the proposed sparsity-
constrained weight mapping for HRTF individualization.

2. System overview
In this paper, we propose a sparsity-constrained weight map-
ping method for HRTF individualization based on anthropomet-
ric features, termed SWM. The system architecture is shown as
Fig. 2. The process of SWM can be divided into three steps:
data preprocessing, model training and HRTF synthesis.

For the data processing process, we operate on the an-
thropometric features and HRTFs to normalize the values,
respectively. After that, the weight vectors between the known
subjects and the target subject in terms of the anthropomet-
ric features and HRTFs are learned by using a non-negative
sparsity-constrained method, respectively. Then, a weight
mapping model is trained to find a relationship between the two
vectors. To this end, DNN is used because of its great feature
representation and good performance in many tasks.

At the test phase, given anthropometric features of any tar-
get subject, the weight vector for anthropometric features is first
generated from the non-negative sparsity-constrained model,
and then by passing the weights to the trained weight mapping
model, the weight vector for synthesizing individual HRTFs can
be obtained. Finally, using the weights, individual HRTFs will
be generated by combining HRTFs from the training subjects.

3. Proposed SWM Method
3.1. Data preprocessing

Assuming that the database contains Ns subjects, and for
each subject Na anthropometric features and HRTFs from Nd

directions are measured. The database is divided into two parts
by randomly allocating the data from Ns,tr subjects to the
training set, and others from Ns,t subjects to the test set. Prior
to the model training, the anthropometric features and HRTFs
need to be normalized for the same scale and variance.

Anthropometric Features. By utilizing the characteristic
that anthropometric measurements for human beings are always
positive, a non-negative sparsity-constrained method is used
to build the relationship between the training subjects and the
target subject. In order to keep the property of the anthropo-
metric features, min-max normalization is used to preprocess
the anthropometric features to limit the values between 0 and 1.
For the n-th anthropometric feature of them-th subject, denoted
as am,n, the preprocess is expressed as

ām,n =
am,n −ma(n)

Ma(n)−ma(n)
, (1)

where ma(n) and Ma(n) denote the minimum and maximum
of the n-th anthropometric feature over the training set, respec-
tively.

HRTFs. Because human is not sensitive to the fine details of
the phase spectrum of HRTFs in localization and discrimination
perception [19], and the logarithmic magnitude of HRTFs
is more approaching human’s auditory perception, which is
experimentally verified in [20], the log-magnitude of HRTFs

are chosen to model HRTFs in this paper. In order to obtain
HRTFs in the same scale, we preprocess the log-magnitude of
HRTFs by calculating the directional transfer function (DTF)
followed by min-max normalization, which is expressed as

Lm,(jNb+i) = Hm,j,i − 1

Ns,trNd

Ns,tr∑

q=1

Nd∑

p=1

Hq,p,i, (2)

L̄m,n =
Lm,n −mh(n)

Mh(n)−mh(n)
, (3)

whereHm,j,i is the log-magnitude of them-th subject’s HRTFs
for the i-th frequency bin from the j-th direction. i =
1, ..., Nb with Nb of the number of the frequency bins. mh(n)
and Mh(n) denote the minimum and maximum of the n-th
frequency bin of log-magnitude spectrum acrossNs,tr subjects,
respectively. L̄m,n denotes the normalized log-magnitude for
the m-th subject, and n = (jNb + i) = 1, ..., NdNb.

3.2. Weight generation

The key idea of this paper is to synthesize HRTFs given
anthropometric features of a target subject by combining HRTF-
s from the training set, without the assumption as previous
work in [17][18] that the combination weight vector is the
same as those of anthropometric features. To this end, two
sparse vectors, which respectively build a relationship in terms
of anthropometric features and HRTFs between the training
subjects and a target subject, are first generated, and then a
weight mapping model is built to find a relationship between
the two vectors.

Given the anthropometric features for a target subject, w∗a
can be obtained by solving a minimum problem of linear
regression between the training subjects and a target subject
with non-negative sparsity constraint, which is expressed as

w∗a = arg min
wa

||At −waAtr||22 + λa||wa||1,

s.t., wa ≥ 0, (4)

where At denotes the preprocessed anthropometric features
for a target subject. Atr ∈ RNs,tr×Na contains all the
preprocessed anthropometric features across the training set,
whose item of the m-th row and n-th column is ām,n. The
shrinking parameter λa controls the sparsity level of the model.

Meanwhile, a weight vector w∗h for combining HRTFs of
a target subject is obtained by solving a nonnegative sparsity-
constrained regression problem, which is formulated as

w∗h = arg min
wh

||Lt −whLtr||22 + λh||wh||1,

s.t., wh ≥ 0, (5)

where Lt denote the preprocessed HRTFs for a target subject.
Ltr ∈ RNs,tr×NdNb contains the preprocessed HRTFs, whose
item of the m-th row and n-th column is L̄m,n. λh is the
shrinking parameter.

Eq.(4) and (5) are two convex optimization problems.
We solve them by l1-regularized least squares problem solver
discussed in [21], which estimates a vector of regression coef-
ficients by minimizing the residual sum of squares subject to a
constraint on the l1-norm of the coefficient vector. To prevent
overfitting, theK-fold cross-validation approach is used to train
λa and λh[22]. Here, we use tenfold, and the parameters are
chosen with the minimum cross-validation errors.
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3.3. Weight mapping

The main idea of the presented SWM is to generate more
accurate weights to superpose HRTFs of a target subject from
the training subjects. To this end, we use weight mapping to
build a match from the weights of anthropometric features to
the weights of HRTFs. Based on the weights from Sec. 3.2, the
mapping process can be formulated as

Minimize ||ŵ∗h −w∗h||2F , with ŵ∗h = fa→h(w∗a). (6)

We exploit DNN to solve this problem because of its
great performance verified in other tasks. DNN is capable of
approximating nonlinear functions of the inputs. In this paper,
we use a back propagation DNN whose inputs and outputs are
w∗a and w∗h from Sec. 3.2, respectively. Mean square error is
used for cost function. Besides, an early stop approach is used
to improve generalization.

DNN-oriented method significantly works well in solving
problems in big data. In this paper, an iterative data extension
method is proposed to increase the number of training samples.
At the k-th iteration, we exhaustively exclude the data of k
subjects from the training set, and calculate the weight vectors
using (4) and (5). Following that, w∗a and w∗h are constructed
by inserting 0 at the corresponding position of the excluded
subjects. The illustration of the first two iterations is shown in
Fig. 3. For the first iteration, one of Ns,tr training subjects
is excluded from weight calculation by brute-force method.
Assuming that the j-th subject (j = 1, ..., Ns,tr) is chosen,
the weights vector is obtain by calculating an initial weights
using the data from the other subjects followed by inserting
0 into j-th item. Then, for the second iteration, any two of
Ns,tr training subjects are excluded, such as the i-th and j-
th subjects in Fig. 3. After weight calculation, 0s are setting
for the i-th and j-th positions of w∗a and w∗h. Therefore,
after K iterations, the total number of extended weight pairs
is [Ns,tr(Ns,tr + 1) · · · (Ns,tr +K − 1)]/K.

Finally, we synthesize HRTFs for a target subject by first
applying ŵ∗h to HRTFs of the training subjects as

L̂t = ŵ∗hLtr/||ŵ∗h||1, (7)

and post-processing, which is calculated by inverting operations
of Eqs. (2) and (3).

4. Performance evaluation
In this section, the performance of the proposed SWM method
is evaluated in terms of objective and subjective experiments.
CIPIC database is used for this purpose [23]. For 43 subjects in
CIPIC, head-related impulse responses (HRIRs) are obtained
from the directions of 25 azimuths and 50 elevations at a
distance of 1m. Each HRIR has been windowed in about 4.5ms
(200 points) with the sampling rate of 44.1kHz. Moreover, 37
anthropometric features, which contains 17 for the head and the
torso, and 10 for each pinna, are measured from 35 subjects.
We randomly choose data from 30 subjects as the training set,
and the rest as the test set. First, each HRIR is transformed
into an HRTF by using 256-point FFT followed by constant-Q
filtering. Also, the frequency band is limited between 200Hz
and 20kHz, resulting in 115 coefficients for each HRTF. The
numbers of input nodes and output nodes in DNN for weight
mapping both are set to 30, which is the same as the number
of training subjects. Furthermore, we set the number of hidden
layers to 2 with 10 nodes per layer. The dropout fraction is set to
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Figure 3: The illustration for iterative data extension process.

Table 1: Objective performance comparison in terms of log-
spectral distortion (LSD), root mean square error (RMSE)and
relative RMSE (RRMSE).

Method LSD[dB] RMSE RRMSE
L2 13.2874 0.0809 0.1695
[17] 7.0294 0.1063 0.2234
[18] 5.6096 0.0765 0.1588

Proposed SWM 4.3040 0.0715 0.1488
OptWT 3.8981 0.0724 0.1510

0.5, and the sparsity target is 0.2. Moreover, we use the Sigmoid
activation function because of its nonnegative property and
great performance in other tasks. The number of the iteration
is set to be 3 and thus we obtain the total of 4960 extended
weight pairs.

4.1. Objective evaluation

Log-spectral distortion (LSD) in frequency domain, and
root mean square error (RMSE) in time domain are used
as the metrics for objective evaluation. LSD expresses
the distortion between the estimated and the measured

HRTFs as LSD =

√
1

Nf

∑
m,d,k

(
20 log10

|Hm,k,d|
|Ĥm,k,d|

)2
,

RMSE defines the difference between the estimated
and the measured HRIRs, which is expressed

as RMSE =
√

1
Nm

∑
m,t,d(hm,t,d − ĥm,t,d)2.

Furthermore, the relative RMSE (RRMSE) is also
calculated as the normalized RMSE, i.e., RRMSE =√

1
Nm

∑
m,t,d(hm,t,d − ĥm,t,d)2/

∑
m,t ||ĥm,t,d||2, where

m = 1, ..., Ns,t, t = 1, ..., Nt, d = 1, ..., Nd, k = k1, ..., k2
denotes the range of the considered frequency bins, and thus
Nb = k2 − k1 + 1. Nt is the number of the sampling points
for each HRIR. Nf = NsNdNb, and Nm = NsNdNb.

We compare our SWM with 4 other methods: L2 method
without sparse constraint, i.e., w∗h = A†trAt; the methods in
[17] and [18]; and the optimal method calculated as w(opt)

h =

L†trLt, denoted as OptWT. OptWT achieves the theoretical
lower bound for LSD. The frequency band between 200Hz and
20kHz is focused on. The results are shown as Table 1 in terms
of LSD, RMSE and RRMSE. First, it is seen that the LSD
performance of the proposed SWM dramatically outperforms
other method except OptWT. While compared with OptWT,
there only exits a 0.4059dB gap for SWM. It is also observed
that the performance of L2 is much worse than other sparse
methods, which agrees to the conclusion in [17]. Moreover,
we observe that SWM obtains the best performance in terms
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Table 2: LSD (dB) comparison for different bands (kHz).

Band OptWT SWM [17] [18] [15]
0.2-1.0 0.8643 1.0705 2.0828 3.3380 1.2572
1.0-2.0 1.1555 1.6788 3.8203 2.4180 1.7882
2.0-4.0 2.2523 2.3885 4.9831 2.8034 2.2142
4.0-8.0 2.8938 3.2106 6.7398 3.6385 3.4673

8.0-15.0 4.1628 4.9690 9.4756 5.6147 5.8007
15.0-20.0 4.5525 5.1561 10.0142 5.8508 -

of RMSE and RRMSE in time domain. The results are not an
exact match to those of LSD. The reason is complex because a
point of an HRIR are recovered by processing all the frequency
bands of an HRTF. It also infers that when using different
metrics, the results might not be strictly identical each other.

We also shows the LSD for five frequency bands in Table
2 by comparing to [17], [18], [15] and OptWT. From the table,
we can observe that LSD increases with frequency, and SWM
performed better than other methods in most frequency bands
except OptWT. Over high frequency bands, especially above
8kHz, SWM gains significantly lower LSD than [15].

4.2. Subjective evaluation

In this section, we conduct subjective experiments to evaluate
the localization performance of proposed SWM. 5 listeners
without any hearing problem participated in subjective exper-
iments. Their anthropometric features are measured using the
method in [24] via a camera.

Prior to the experiments, the subjects perform the procedu-
ral training to reduce the influence of procedural factors on the
results by playing binaural signals from 5 different directions
with the feedback, while in the test phase, no feedback is given.
The localization is tested on a whole sphere at a distance of
1.2m. Furthermore, the test files are labeled by a random value
from 1 to 1000 for the three kinds of HRTFs. During the
experiments, the repeat is allowed. Finally, after listening to
an audio, 5 subjects are required to record the corresponding
perception direction.

The perception results of subjective localization experi-
ments for 5 subjects are shown in Fig. 4 in terms of the target
angles and the perception angles on the horizontal plane. In
this figure, the results between the diagonal lines with positive
slope are regarded as correct answers, with the interval of two
neighbour lines of 20◦. The results between two diagonal lines
with negative slope are the front-back confusion judgements.

From Fig. 4, it can be observed that the correct rate (CR)
using individual HRTFs is significantly higher than that using
generic HRTFs and the individual HRTFs generated by our
SWM. Among errors, the front-back confusion (FBR) happens
quite frequently, and most of confusion errors are back-front
confusion. Fig. 4 shows that there exists significant difference
among subjects when considering the ability of localization
perception. For example, the correct perception rate for subject
2 is only 40.11% and 42.89% using generic HRTFs and the
individual HRTFs, respectively, while for subject 3, they are
41.42 and 54.81%, respectively. The noticeable perception
difference is caused by several reasons. One possible reason is
that some subjects are not familiar with the binaural audio even
after procedural training. Another lies in different sensitivities
among subjects to the gap between the estimated individual
HRTFs by SWM and the ground truth.

Moreover, the statistical results tested on a sphere have
been shown in Table 3 in terms of CR, FBR and up-down
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Figure 4: Results of subjective localization experiments for 5
subjects. (a) generic HRTFs. (b) our SWM method.

Table 3: Subjective performance comparison in terms of
correct rate (CR), front-back confusion rate (FBR) and up-down
confusion rate (UDR) by using the proposed SWM, generic
HRTFs and [18], respectively.

HRIR data CR (%) FBR (%) UDR (%)
Generic HRTFs 43.67 30.22 35.64

[18] 50.25 24.26 25.91
Proposed SWM 53.33 17.78 21.59

confusion rate (UDR) using the generic HRTFs, HRTFs from
[18] and SWM. It can be seen that our proposed SWM method
achieves best localization perception performance, and 9.66%
and 3.08% gains of CRs are respectively achieved when com-
pared to other methods. Furthermore, SWM generates a
dramatic rate reduction of up to 12.44% and 14.05% in FBR and
UDR, respectively. It infers that 1) the localization perception
performance can be improved by the means of individual-
ization, and 2) the improvement of combination weights is
helpful for localization perception. Moreover, it is seen that the
UDR is higher than FBR, because the main factor for up-down
localization is the pinna, but they are not very sensitive to the
variance of sound wave.

5. Conclusions
In this paper, an HRTF individualization method by exploring
weight mapping based on anthropometric features is proposed.
SWM first learns two sparse representations between the target
subject and the training subjects in terms of anthropometric
features and HRTFs, respectively. To this end, we use a non-
negative sparsity-constrained model with considering the non-
negative property of the anthropometric features. Next, a map-
ping between the two weight vectors is implemented by using
a neural network based logistic regression, and an iterative data
extension strategy is proposed in order to alleviate underfitting.
The objective and subjective experimental results show that
the proposed SWM method gains less LSD when compared
with other methods, and achieves better localization perception
performance. Our future work focuses on perception-based
HRTF individualization, such as, setting different weights for
different frequency bands based on perception sensitivity.
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