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Abstract
In this paper, we propose using common representation learn-
ing(CRL) for speaker normalization in automatic speech recog-
nition (ASR). Conventional methods like feature space max-
imum likelihood linear regression (fMLLR) require two pass
decode and their performance is often limited by the amount of
data during test. While i-vectors do not require two-pass de-
code, a significant number of input frames are required for esti-
mation. Hence, as an alternative, a regression model employing
correlational neural networks (CorrNet) for multi-view CRL is
proposed. In this approach, the CorrNet training methodology
treats normalized and un-normalized features as two parallel
views of the same speech data. Once trained, this network gen-
erates frame-wise fMLLR-like features, thus overcoming the
limitations of fMLLR/i-vectors. The recognition accuracy us-
ing the proposed CorrNet-generated features is comparable with
the i-vector model counterparts and significantly better than the
un-normalized features like filterbank. With CorrNet-features,
we get an absolute improvement in word error rate of 2.5% for
TIMIT, 2.69% for WSJ84 and 3.2% for Switchboard-33hour
over un-normalized features.
Index Terms: Automatic speech recognition, Correlational
Neural Networks, fMLLR, Multi-view, Common representation
learning, speaker normalization, i-vectors

1. Introduction
Recently, there has been an increased interest in investigating
speaker normalization techniques to improve the perfor-
mance of real-time automatic speech recognition (ASR)
systems [1–3]. It is widely accepted that speaker normalized
features provide gains over un-normalized features [4, 5]. This
has set the trend of exploring better methods for extracting
speaker normalized features from un-normalized ones. Two
very popular methods for speaker normalization are feature
space maximum likelihood linear regression (fMLLR) [6, 7]
and speaker identity vectors (i-vectors) which carry speaker
specific information [8]. However, these conventional methods,
suffer from data-insufficiency problems as they require a
certain number of frames from a specific speaker for robust
estimation. In real-time systems where we encounter short
duration utterances from unknown speakers, fMLLR and
i-vectors have limitations.

Various feature extraction techniques based on deep neural
networks (DNN) are drawing attention lately, of which some
methods explicitly perform some form of speaker normaliza-
tion. Examples of such methods include the pseudo-fMLLR
approach [9], which proposes a DNN based feature extractor
trained to generate fMLLR-like features from un-normalized
filterbank (fbank) features. The pseudo-fMLLR features proved
to perform better than handcrafted fbank or MFCC features.

Similarly, [10] follows a canonical correlation analysis (CCA)
based approach for feature extraction in a multi-view learning
framework. Such methods overcome the aforementioned short-
comings of fMLLR/i-vectors.

Given that different kinds of feature representations exist
for the same data in different modalities, it would be beneficial
to use more than one representation to model our task at hand.
This can be achieved by learning common representations from
the different feature representations. In CRL approaches, dis-
tinct descriptions of data are treated as different parallel views
of the same data [11–13]. During training, we may have access
to all the views of the data, but while testing certain views may
not be available. By learning a common representation between
views, we can perform certain tasks such as reconstructing one
view from another [14] and improving the performance of a sin-
gle view system.

Applying the concepts of CRL, correlational neural net-
works [15] combine two popular techniques, namely, CCA [16]
and multi-modal autoencoders (MAE) [17]. CCA is commonly
used for learning shared representations of different views of
data when they are projected in a highly correlated common
space [18–20]. On the other hand, MAE aims to perform self-
reconstruction and cross-reconstruction of the parallel views
[17]. Hence, combining the complimentary characteristics of
the aforementioned approaches, the CorrNets are trained with
the dual objective of minimizing reconstruction error and max-
imizing the correlation between the views in a common pro-
jected space. CorrNets have previously been used in the context
of image data and text data for the purpose of transfer learning,
transliteration and reconstruction of a missing view. One such
common multi-view learning application discussed in [15] is to
consider the two halves of an image as two views of the same
data and reconstruct one view from the other in the case of a
missing view.

In this paper, we discuss the first attempt to use CorrNets
as a regression based feature extraction module to achieve real-
time per-frame speaker normalization for ASR applications. Al-
though our approach follows principles similar to [10], fMLLR
normalized features which are speaker independent phoneme
representations are used in place of articulatory features. This
alleviates the difficulty in obtaining articulatory features for
large Databases.

Section 2 in this paper discusses the proposed method for
speaker normalization using the CorrNet feature extractor, its
architecture and implementation details. Section 3 explains the
experiments performed, the data-sets used and the toolkits used
for the specific modules. In Section 4, we report the results of
all the experiments and discuss the observations that follow. Fi-
nally, Section 5 provides a summary of this paper and highlights
its contributions.
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2. Proposed Technique
2.1. Background

We propose to apply the CRL approach of CorrNets for gener-
ating speaker normalized features in order to improve the per-
formance of the speech recognition system for real-time appli-
cations. In this framework, for each frame of training data, we
assume the availability of two parallel views:

• The un-normalized filterbank or mel frequency cepstral
coefficients(MFCC) features as view-1 (V1)

• The normalized fMLLR features as view-2 (V2)

This proposed feature normalization technique deals with the
following constraints while testing:

• A single test utterance is available for decoding at each
time instant

• Knowledge about the test speaker is unknown

Hence the test utterance has to be treated independently and
normalization techniques have to be performed. The CorrNet
design is based on the intuition that the normalized and un-
normalized features will be correlated in some projected space,
as they are just different feature representations of the same
data.

2.2. Model Architecture and Implementation Details

The speaker normalized features generated by the CorrNet are
fed to a DNN Acoustic model for training as shown in Figure
1. The CorrNet feature extractor module is provided with the
two input views, V1 as filterbank/MFCC and V2 as fMLLR. In
this module, there exists a shared layer resembling a bottleneck
layer which is common to both the views. This layer projects
the two views into a common space such that the correlation
between the views in that space is maximized.

2.2.1. Objective Function

The overall optimization loss function for the CorrNet model is
as follows:

Loss =Lmse([none, V2], V
rec
2 )

+ Lmse([V1, none], V
rec
2 )

+ Lmse([V1, V2], V
rec
2 )

− λ× Lcorr(P(V1),P(V2))

(1)

where, Lltype([in1, in2], rec) is said to denote the ”ltype” loss
(mean square loss (MSE) or correlation loss), when the Corr-
Net is provided with inputs ”in1” as view-1 and ”in2” as view-
2. The MSE is calculated between the original fMLLR feature
and the reconstructed fMLLR feature - ”rec”. P(A) implies the
common layer projection of the input A. The scaling factor λ is
used to adjust the range of correlation loss (corrloss) to match
that of reconstruction loss. The negative sign for corrloss im-
plies that we intend to maximize the correlation in the projected
space. The corrloss is defined as follows for N input instances:

Lcorr(A,B) =

∑N
i=1(Ai −A)(Bi −B)√∑N

i=1(Ai −A)2
∑N

i=1(Bi −B)2
(2)

In other words, we state that the CorrNet is trained and opti-
mized to perform the following:

• Reconstruct fMLLR from itself (Self-reconstruction)
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Figure 1: Proposed Model Architecture

• Reconstruct fMLLR from fbank/MFCC (Cross-
reconstruction)

• Reconstruct fMLLR when both fMLLR and MFCC are
provided as inputs (Mixed-reconstruction)

• Maximize the correlation between fMLLR and
fbank/MFCC in the common projected space

2.2.2. Training and Decoding Methodology

The model should be able to generalize for speakers not seen
during training. To achieve this, the validation set is built on
unseen speaker identities, in other words, the splitting is done
speaker wise and not utterance wise. At test time as depicted
in Figure 2 , only un-normalized features are available. Hence
these features are passed as inputs to the already trained Cor-
rNet, and their corresponding outputs are taken to be the new
normalized features. This process is called projecting the test
data through the CorrNet. There are two ways of obtaining the
projected representations from the CorrNet,

• Considering the output at the shared common layer as
the projected output

• Considering the reconstructed fMLLR output as the pro-
jected output

For the task at hand, considering the projection from the recon-
structed layer proved to be better. The projected output data is
now passed to the DNN acoustic model for decoding.

2.2.3. Parameters and model-tuning

There exist two main hyper-parameters that need to be tuned
empirically to achieve the best performance using this architec-
ture.
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Figure 2: Decoding Phase

• Scaling parameter for correlation loss: The range of Cor-
relation loss might be different from the other recon-
struction losses. In order to maintain consistency while
summing up the losses, a scaling parameter is multiplied
to the correlation loss before it is summed up with other
losses. This parameter is also tuned to achieve the ap-
propriate scaling for each database.

• Loss weights: Each loss term in the training objective
is multiplied by a scalar weight in order to place more
emphasis on few of the loss terms as compared to others.

2.3. Difference between the proposed method and other ex-
isting work

An existing method to generate pseudo-fmllr features [9], pro-
poses that a DNN can learn speaker normalizing transforms like
FMLLR, when un-normalized features are fed as inputs and the
corresponding speaker-normalized features are provided as tar-
gets. The training objective here is only to minimize the mean
squared error. In contrast, when we use CorrNets for the same,
we provide extra supervision in terms of additional loss terms as
formulated in Equation 2. This supervision forces the network
to improve its reconstruction abilities while focusing on learn-
ing to produce maximally correlated common representations.

CCA based approaches have been previously used for CRL
in ASR applications [10]. In that work, the acoustic and ar-
ticulatory features are taken as two views of the data and the
multi-view representation thus learned improves the phonetic
recognition. However, articulatory features are tedious to ob-
tain and suffer from data insufficiency issues. Moreover, this
approach lacks an explicit reconstruction objective and hence
would not be very effective for the purpose of reconstructing a
missing view. On the other hand, our approach uses fMLLR as
the normalized view and is robust in achieving reconstruction
and maximizing correlation.

3. Experimental Details
Experiments performed in this section are designed to com-
pare the proposed method with the baselines and other speaker
normalization approaches. Input feature extraction was done
using the Kaldi toolkit [21] to obtain 13-dimensional MFCC
(without delta derivatives), 36-dimensional filterbank and 40-
dimensional fMLLR features using a window size of 25ms and
a shift of 10ms. Cepstral mean variance normalization (CMVN)
was applied to the input features. Two levels of normalization
were considered, namely, utterance-norm, where the normaliza-
tion was done on utterance basis (simulating the real-time con-
straints) and speaker-norm, where the normalization was done
considering per-speaker data.

3.1. Details of speech corpus used

TIMIT, WSJ84, and Switchboard-33hr (SWBD-33) subset were
used in this paper for testing our proposed model. TIMIT cor-
pus [22] consists of 630 speakers with 10 oral recordings each.

462 speakers’ data was taken as the train data, 50 speakers’ data
was used in development (dev) set and 24 speakers’ data was
used in test set. A bi-gram language model which was built us-
ing the whole train set was used while decoding. In Wall Street
Journal speech corpus [23], the training set consists of 7138 sen-
tences and the eval93 subset consists of 213 sentences. Decod-
ing was performed using a tri-gram language model built on the
train data. The SWBD-33 considered for this experiment was
taken from a 33-hour subset of Switchboard [24]. The evalua-
tion set, also called eval2000 is taken from 2000 HUB5 English
evaluation [25] and contains 40 conversations which amount to
2.1 hours of data. The CALLHOME (callhm) [26] set consists
of 20 telephone conversations of 30 mins each. The four-gram
language model used to decode SWBD-33 was built on the train
data.

3.2. Details of CorrNet Feature Extractor

Tensorflow toolkit [27] was used to design the CorrNet feature
extractor. The input features are spliced to give a 9 frame con-
text as input to the CorrNet. The number of nodes in the shared
common layer was taken to be 100 and all other layers in Figure
1 had 512 nodes. Xavier initialization protocol was borrowed
from Kaldi to initialize the Tensorflow-CorrNet to maintain a
fair comparison of the results. A batch size of 256 with adam
optimizer and sigmoid activation function gave the optimal per-
formance in terms of speed and accuracy. The learning rate
was set to 0.006 to ensure that there was no variance flooring
or Nan values in the output error. The λ value was set to 0.5,
2 and 0.1 for TIMIT, WSJ84 and SWBD-33 respectively. The
reconstructed output was considered the projected output. All
the hyper-parameters were tuned and set to give the best perfor-
mance intended. Three variations of the CorrNet model were
trained.

• CorrNet (Recon fM←fb) : Here only the reconstruc-
tion of fMLLR from fbank/MFCC is kept active during
training. This closely resembles the pseudo-fMLLR ap-
proach in [9] except for the shared hidden layer which
serves as a bottleneck layer.

• CorrNet (All losses) : Here all the losses are active and
the CorrNet is trained to minimize the overall objective
function.

• CorrNet (Weighted loss) : Here the losses are weighted,
so some losses are given more importance than the oth-
ers.

The combined scoring that was performed on the decode out-
puts of the three CorrNet models gave the best overall perfor-
mance.

3.3. Details of DNN Acoustic Model

The Kaldi toolkit [21] was used for gaussian mixture modeling
(GMM), hidden markov modeling (HMM) and DNN model-
ing. The alignments generated using the GMM-HMM models
trained on fMLLR features were used as the input alignments
for the DNN model. The configuration of the DNN acoustic
model included a 9-frame input context, 2048 hidden neurons
per layer, 3 hidden layers and sigmoid activations. The DNN
was pretrained using the layer-wise restricted boltzman ma-
chine (RBM) pre-training approach. The cross-entropy train-
ing was performed using mini-batch gradient descent with a
batch-size of 256. The inputs to the DNN acoustic model dur-
ing training included the original fMLLR features as well as the
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Table 1: Phone error rate(%) for TIMIT and word error rate (%) for WSJ84 and SWBD-33. Results for CorrNet architectures are
reported when filterbank features are provided as inputs.

TIMIT SWBD-33 WSJ-84

spk-norm utt-norm spk-norm
eval2000

utt-norm
eval2000 spk-norm utt-normInput features to

DNN Acoustic Model test dev test dev swbd callhm swbd callhm eval eval
MFCC 20.3 18.9 21.4 20.0 23.7 35.5 24.5 35.7 14.26 15.86
MFCC + i-vectors 20.2 18.3 20.9 19.6 23.4 35.2 24.1 35.5 14.0 15.61
Filterbank 20.0 18.4 21.4 20.7 22.8 34.6 24.3 34.6 13.74 14.96
Filterbank + i-vectors 19.5 17.9 21.6 19.3 22.04 33.6 23.6 34.8 13.57 14.19
fMLLR 18.3 17.4 25.4 24.8 20.8 31.4 25.0 40.1 11.56 18.24
fMLLR + i-vectors 18.1 17.1 25.1 23.8 21.02 31.4 24.7 40.1 11.36 18.04
CorrNet Models
CorrNet (Recon fM←fb) 19.6 18.0 19.7 18.4 21.9 33.7 21.8 35.0 12.75 13.39
CorrNet (All loss) 19.4 17.9 19.0 18.3 21.53 32.5 21.9 34.5 12.64 13.29
CorrNet (Weighted loss) 19.4 17.8 19.0 18.3 21.5 32.6 21.7 34.5 12.58 13.23
Combined Scoring 18.8 17.7 18.9 18.2 21.1 32.5 21.3 34.1 12.52 13.17

CorrNet generated features. For the Baselines, 40-dimensional
i-vectors were estimated using a diagonal universal background
model GMM (UBM-GMM) trained on input MFCC features.
The number of mixture components used for the UBM-GMM
were 128 for TIMIT and WSJ84 and 512 for Switchboard 33
hour (SWBD-33) subset.

4. Results and Discussions
The results of all the experiments that were performed to vali-
date the proposed model are reported in Table 1. The results are
in terms of phone error rate (PER) for TIMIT and word error
rate (WER) for WSJ84 and SWBD-33. These error rates are
reported for the baselines as well as the CorrNet models dis-
cussed in Section 3.2. Both spk-norm and utt-norm results are
listed out for the sake of comparison. Utterance wise normal-
ization replicates the real-world scene, where fMLLR, i-vectors
and mean-variance normalization are all performed at utterance
level. The following observations were made based on the re-
sults obtained:

• The performance obtained while using filterbank or
MFCC features in isolation to train a DNN classifier is
considered as the Baseline. Similarly while performing
speaker-wise normalization the performance of fMLLR
features or fMLLR + i-vector features are considered as
the upper limit performance achievable.

• In the case of MFCC or fbank, adding i-vectors al-
ways resulted in superior performance, whereas adding
i-vectors to fMLLR did not improve the performance
significantly. This may be because the fMLLR features
already model the speaker normalizing transforms and
may not benefit from the additional speaker information
provided by i-vectors.

• Utterance normalization (utt-norm) is what we ideally
require for practical applications where we do not get
access to adequate data from a specific user. Hence
we perform normalization on utterance basis. It is ob-
served across all three databases, that CorrNet models
show consistent improvements in the utt-norm scenario
by generating frame-wise normalized outputs.

• Speaker-normalization (spk-norm) implies that we have
multiple utterances from the same speaker which is used

to estimate fMLLR or i-vectors. Even in this case, the
CorrNet based model gives performance closest to the
best fMLLR model as compared to fbank + i-vector (or)
MFCC + i-vector.

• The CorrNet (Recon fM←fb) loss is similar to the
pseudo-fMLLR architecture as it contains only one ac-
tive MSE loss term. However, adding all losses and per-
forming combined scoring further improves the accuracy
of the CorrNet based ASR.

• The CorrNet all-loss and weighted-loss models give
comparable results across databases. However, while an-
alyzing their decode outputs, we see that they produce
different errors. This could justify why combined scor-
ing helps in our case.

• It is observed that performing a combined scoring of
the three CorrNet model variants renders further im-
provements in WER/PER. Combined scoring generates
a union of lattices from the input models and then per-
forms a minimum bayes risk decoding on the resulting
lattice. The success of score combined can be justified
by analyzing the decode outputs of each model. We ob-
serve that the decode outputs capture different informa-
tion when trained with different loss models although the
final WER is similar. Therefore, when these models with
varying degrees of abstraction are combined, they result
in a finer lattice.

5. Conclusions
In this paper, we propose a method of speaker normalization
for real-time speech recognition applications, where sufficient
speaker information is not accessible. A CorrNet feature extrac-
tion module is trained to output frame-wise normalized features
when provided with un-normalized input features. This pro-
posed multi-view training set up assumes speaker normalized
(fMLLR) and un-normalized (MFCC/fbank) features as the two
views of speech data available during the training phase. The
DNN acoustic models built for TIMIT, WSJ84 and SWBD-33
show that the proposed method of frame-wise speaker normal-
ization give convincing improvements over all DNN baselines
including conventional methods like fMLLR and i-vectors for
the utterance normalization scenario.
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