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Abstract

In this research, we propose a novel raw waveform end-
to-end DNNs for text-independent speaker verification. For
speaker verification, many studies utilize the speaker embed-
ding scheme, which trains deep neural networks as speaker
identifiers to extract speaker features. However, this scheme has
an intrinsic limitation in which the speaker feature, trained to
classify only known speakers, is required to represent the iden-
tity of unknown speakers. Owing to this mismatch, speaker em-
bedding systems tend to well generalize towards unseen utter-
ances from known speakers, but are overfitted to known speak-
ers. This phenomenon is referred to as speaker overfitting. In
this paper, we investigated regularization techniques, a multi-
step training scheme, and a residual connection with pooling
layers in the perspective of mitigating speaker overfitting which
lead to considerable performance improvements. Technique ef-
fectiveness is evaluated using the VoxCeleb dataset, which com-
prises over 1,200 speakers from various uncontrolled environ-
ments. To the best of our knowledge, we are the first to verify
the success of end-to-end DNNs directly using raw waveforms
in text-independent scenario. It shows an equal error rate of
7.4%, which is lower than i-vector/probabilistic linear discrim-
inant analysis and end-to-end DNNs that use spectrograms.
Index Terms: speaker overfitting, speaker embedding, raw
waveform, end-to-end, speaker verification

1. Introduction

With the recent success of deep learning, studies that replace
individual sub-tasks with deep neural networks (DNNs) are
highly popular in various audio domains [1, 2, 3, 4, 5, 6]. This
trend also applies to speaker verification. Three major sub-
tasks of speaker verification (i.e., raw waveform pre-processing,
speaker feature extraction, and back-end classification) are each
being replaced with DNN-based approaches. We use a speaker
embedding scheme that trains the DNN as a speaker identifier
and use the selected hidden layer as the speaker feature [7, 8].
Studies on raw waveform processing and back-end classifica-
tion have also occurred [3, 6, 9]. Individual DNNs are integrated
to comprise end-to-end DNNGs [1, 3, 10, 11, 12, 13].

Although DNN-based approaches have been successfully
used for speaker verification, there is a difference between
speaker and audio domains. In the speaker embedding scheme,
there is a task mismatch between the training task: speaker
identification, and the actual task: speaker verification. Be-
cause speaker identification is only conducted on predefined
speakers, the speaker identifier may not be generalized towards
unknown speakers in speaker verification. In this study, we
address this phenomenon, which we call speaker overfitting,
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where the speaker features from the speaker embedding scheme
well-represent unseen utterances from known speakers but are
overfitted toward known speakers. An example of speaker over-
fitting is shown in Figure 1 and is further described in Section
3.

We have been building raw waveform DNNs and investi-
gated various techniques to mitigate speaker overfitting.

e Regularization methods [14, 15, 16] and recent deep
learning techniques [17, 18, 19, 20, 21]

o The multi-step training scheme [10]

e Importance of pooling, which is one of the keys to the
improved performance described in Section 6

Adopting various techniques, we present a raw waveform
end-to-end system, which shows better performance than both
the i-vector/ probabilistic linear discriminant analysis (PLDA)
system and the spectrogram end-to-end system.

The rest of this paper is organized as follows. Section 2 dis-
cusses previous works. Section 3 analyzes speaker overfitting.
In Section 4, a system description is provided. Key approaches
to mitigate speaker overfitting are introduced in Section 5. Sec-
tion 6 describes the experiments and their results. This paper is
concluded in Section 7.

2. Related Works

Past studies on raw waveform processing in DNNs, speaker em-
bedding scheme, and end-to-end DNNs provide the three foun-
dations for this study. Many studies have been conducted to
directly process raw waveforms with DNNs [1, 3, 4, 6, 22].
Among these, the strided convolution receptive field of Col-
lobert et al. [22] is used here.

A speaker embedding scheme that trains a DNN as a
speaker identifier is also used in this paper [7]. In this scheme,
the linear activation of the selected hidden layer is extracted as
the speaker feature. Since proposed, the speaker embedding
scheme has been widely used in DNN-based speaker feature
extraction [8, 12, 23, 24].

End-to-end DNNSs are actively being researched for many
tasks [11, 25, 26]. For speaker verification, beginning with
Heigold et al.’s work, many end-to-end DNNs have been pro-
posed [11, 12, 13]. An end-to-end DNN that inputs raw wave-
forms and outputs verification results [6] is used in this paper.

3. Speaker Overfitting

For speaker verification, a speaker-embedding scheme, which
extracts the speaker feature from a speaker identifiers hidden
layer, is widely used. In this scheme, there exists a task mis-
match between the training task, speaker identification, and the
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Figure 1: (a) Loss of train (train_loss) and validation

set (val_loss). (b) Equal error rates (EERs) of validation
(val_E ER) and evaluation set (eval _EER).

actual task, speaker verification. Nevertheless, many success-
ful systems using the speaker embedding scheme [7, 8, 12, 23]
show that it works in a task mismatch condition.

Speaker features should be able to represent the identity
of an unknown speaker for speaker verification. However, in
speaker identification, all speakers are predefined and unknown
speaker does not exist. Thus, speaker features in a speaker
embedding scheme can be overfitted towards known speakers,
which is likely to evoke performance degradation.

We call the situation where speaker features are able to rep-
resent only known speakers as speaker overfitting. We assume
that it is one of the main causes of performance degradation in
speaker embedding scheme.

Figure 1 depicts the result of an experiment conducted to
reveal this phenomenon. Here, the dataset is divided into three
subsets: train, comprising utterances of known speakers; vali-
dation, comprising unseen utterances of known speakers; and
evaluation, comprising unseen utterances of unknown speakers.
The train set is used to train the speaker identifier. The model
is evaluated at two points. First, the generalization of unseen
utterances of known speakers are evaluated using speaker iden-
tification loss in the train and validation sets (Figure 1 (a)). Sec-
ond, the generalization performance of unknown speakers and
the task mismatch condition are evaluated using the equal error
rate (EER) of the validation and evaluation sets (Figure 1(b)).
Results show that generalization of the task mismatch condition
is successful, because the EER of the validation set decreases as
validation loss decreases. However, generalization on unknown
speakers is not successful, because the gaps between EER on
the validation and evaluation sets widens. Thus, even though
task mismatch does not exist in end-to-end DNNs because the
training task is also speaker verification, speaker overfitting is
also likely to occur.
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4. System Description

In our experiment, we use raw waveform as input for analyzing
speaker overfitting. Doing so, speaker verification task is oper-
ated entirely based on trainable parameters rather than human-
driven techniques. This allows us to take a closer look at the
effectiveness of techniques for mitigating speaker overfitting.

4.1. Speaker embedding models

Two speaker embedding models, one convolutional neural net-
work (CNN) and one CNN-long short-term memory (LSTM)
model, are exploited for our system (see Figure 2). The raw
waveform CNN (RWCNN) model directly embeds the speaker
feature from the raw waveform using convolutional and pool-
ing layers. The RWCNN-LSTM model uses convolutional and
pooling layers to extract a feature map, from the input raw
waveform. Then, the LSTM layer, a widely used recurrent
layer for processing sequential data [27, 28], is exploited to
conduct sequential modeling and to embed the speaker feature.
Both models extract the speaker feature from the raw wave-
form. However, the sequential modeling of time variation is
conducted by the LSTM layer in the RWCNN-LSTM model,
whereas pooling layers entirely conduct the sequential model-
ing in the RWCNN model. The RWCNN-LSTM model is an
expansion of the RWCNN model (see Section 5.2 for details).

4.2. End-to-end model

The raw waveform end-to-end (RWE2E) model is an expanded
version of the RWCNN-LSTM architecture using the b-vector
scheme [9]. This model takes two raw waveforms as input
and composes the b-vector via element-wise operations using
two speaker features, which are those from the RWCNN-LSTM
model. Element-wise operations are expected to represent the
relations between the two speaker features. The b-vector is
propagated through a few fully connected layers to classify
whether the two utterances are from the identical speaker. The
overall architecture of the RWE2E model is illustrated in Figure
3.

5. Mitigating Speaker Overfitting
5.1. Regularization

Various regularization techniques (e.g., L2 regularization and
batch normalization) are key to the recent success of DNNs
[16, 14, 29]. However, we argue that the importance of regular-
ization techniques is even bigger, in terms of mitigating speaker
overfitting. In the task mismatched condition, we assume that
regularizing the training task improves generalization perfor-
mance of the actual task. Thus, speaker overfitting is expected
to be mitigated by regularizing the speaker identifier. Improve-
ment of speaker verification performance via a simple L2 reg-
ularization during speaker identifier training also supports this
claim.

5.2. Multi-step training

Deep networks often exploit pre-training schemes to show im-
proved generalization performance. One such scheme was in-
troduced by Heo et al. [10]. This scheme trains the DNN
over several stages, each stage using the parameters of preced-
ing DNN as initialization. Only the expanded layers are ran-
domly initialized. The layers preceding the LSTM layer in the
RWCNN-LSTM model are initialized using the weights of the
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Figure 2: Model architecture of the speaker embedding mod-
els (upper) and convolutional blocks (lower) for raw waveform
models. The numbers in convolutional layers are kernel length,
stride, and the number of kernels.

RWCNN model. The RWE2E model is initialized using the
weights of RWCNN-LSTM model in the same way. This step
by step training scheme is called multi-step training. In Heo
et al.’s work, multi-step training was used for fast convergence
of end-to-end DNNS. In this paper, multi-step training is used
to effectively mitigate speaker overfitting. Empirical results,
shown in Section 6.3 support the notion that multi-step train-
ing is a key to mitigating speaker overfitting.

5.3. Residual connection and pooling layers

Residual connection [17, 18] is a recently proposed technique
for training very deep architectures, showing better generaliza-
tion performance in many prior studies. With residual connec-
tions, hidden layers can learn residual functions with reference
to inputs. A typical residual block can be written as Equation
1, where x and y are the input and the output, respectively, of
the block. W refers to the weights of hidden layers within the
block, and F'(x, W) is the residual function.

y=F@W)+=z ey

Pooling layers are typically replaced with convolutional
layers in DNNs having residual connections. Studies such as
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Figure 3: Overall illustration of the raw waveform end-to-end
model (RWE2E).

Springenberg et al.’s work [30] show that replacing pooling
layers with big stride convolutional layers can improve perfor-
mance of DNNs. However, in terms of mitigating speaker over-
fitting, usage of pooling layers is hypothesized to be one of the
keys.

In case of task mismatch condition where speaker overfit-
ting occurs, pooling layers can be more effective in generaliza-
tion because pooling layers merely reduce the information with
fixed weights whereas convolution layers are trained using the
training data. As the training continues, the convolutional lay-
ers are trained to identify the given speakers better and therefore
can be over trained.

The pooling layer, on the contrary, can reduce the feature
map size independently of the train set. Additionally, in sig-
nal processing, max pooling can be an upper envelope function
for conducting smoother down-sampling, which is expected to
show better generalization performance [31]. The pooling layer
can also mitigate speaker overfitting by significantly reducing
the number of parameters [29].

6. Experiments
6.1. Dataset

We used the VoxCeleb [13] dataset for speaker verification ex-
periments. VoxCeleb is a public dataset for speaker recognition,
comprising 1,211 speakers (=~ 320 hours) as the train set, and
40 speakers (= 10 hours) as the evaluation set. Thus, raw wave-
form end-to-end DNNs were explored in a text-independent
scenario. Dataset partition and trial composition is identical to
the Voxceleb’s guideline, which makes our system performance
directly comparable to [13], as shown in Table 3.

6.2. Experimental settings

All systems used raw waveforms of length 59,049 (=3'0)
(~3.69 s) as input. Pre-emphasis embedding, an implemen-
tation of pre-emphasis using convolutional layer that has one
kernel of length 2, and a strided convolution layer was used in
all systems. The two parameters of pre-emphasis embedding
were initialized as -0.97 and 1, and the strided convolutional
layer had both a kernel length and a stride of 3.

Stochastic gradient descent was used as an optimizer with
a learning rate of 10~2 and 0.9 momentum. L2 regularization
of 10~ was used. A dropout [15] rate of 50% was used only
in the RWCNN model after the global average pooling layer.
Batch normalization was applied in every layer in every model.
The RWCNN and RWCNN-LSTM model used cosine similar-
ity scoring as the back-end classifier.

The RWCNN models were composed of nine convolution
blocks and two fully connected layers. The RWCNN model



used “original conv block” as the convolution block, and the
residual RWCNN model used “residual conv block”. Com-
parisons of each techniques effectiveness, including L2 regu-
larization and residual connection, were made on the RWCNN
model. In the RWCNN-LSTM model, one LSTM layer with
512 cells was used, followed by two fully connected layers with
1,024 nodes and an output layer. The RWCNN-LSTM mod-
els were trained using two initialization methods to compare
the effectiveness of multi-step training. One used parameters of
RWCNN and the other used random initialization.

In the RWE2E model, a 3,072-dimensional b-vector was
composed using element-wise addition, subtraction, and multi-
plication of two 1,024-dimensional speaker features. Five fully
connected hidden layers with 1,024 nodes were used. The out-
put layer had two nodes, each indicating whether two utterances
were from the same speaker. RWE2E models were also trained
using two initialization methods: one using parameters of the
RWCNN-LSTM and another using random initialization.

6.3. Results

Effectiveness of regularization techniques, multi-step training,
and residual connection with pooling are described from the
perspective of speaker overfitting. The RWE2E-residual model,
which includes all techniques for mitigating speaker overfitting,
is compared with other state-of-the-art systems. In the tables,
“SID ACC?” refers to accuracy of speaker identification of the
validation set, and “SV EER” refers to EER of speaker veri-
fication. A technique is judged effective for mitigating speaker
overfitting when the performance of speaker verification has im-
proved, especially when the improvement occurs without the
corresponding performance improvement of speaker identifica-
tion on the validation set.

L2 regularization (i.e. weight decay) [16] helped mitigate
speaker overfitting. By simply adopting weight decay to all
hidden layers, 20% relative performance improvement was at-
tained. Results are shown in Table 1.

Effectiveness of the multi-step training is shown in Table
2. In the RWCNN-LSTM model, multi-step training decreased
speaker identification accuracy on the validation set, whereas
speaker verification performance was improved. It shows that
multi-step training helped mitigate speaker overfitting in a task-
mismatch condition. Multi-step training also mitigated speaker
overfitting in end-to-end DNNs.

Experimental results of the residual connection and pool-
ing layers are shown in Tables 1 and 2. Table 1 shows that ap-
plying residual connections without pooling decreased perfor-
mance. The residual connection with pooling layers success-
fully mitigated speaker overfitting, supporting our assumption
from Section 5.3. Additionally, the “Inception-res-v2 model”,
which shows state-of-the-art performance in image recognition
[21], were tested, but did not appear to be effective in raw wave-
form models.

Systems performance in this paper is directly comparable
with the results in [13], because the dataset configuration and
trials are identical. Results are compared in Table 3, which
shows that our proposed RWE2E model with L2 regulariza-
tion, residual connection with pooling, and multi-step training,
outperforms both the i-vector/PLDA system and the end-to-end
system that takes a spectrogram as input.
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Table 1: Effectiveness of various methods in RWCNN model for
mitigating speaker overfitting

System SID ACC SV EER
RWCNN-w/o weight decay 88.8 14.9
RWCNN-w weight decay 90.0 12.3
RWCNN-residual-w/o pooling 78.6 18.9
RWCNN-residual-w pooling 94.1 10.0
RWCNN:-inception-resnet-v2 94.3 11.7

Table 2: Effectiveness of the multi-step training

System SID ACC SV EER
RWCNN-LSTM-w/o multi-step 96.1 11.8
RWCNN-LSTM-w multi-step 94.6 9.2
RWCNN-LSTM-residual 083 87
(proposed)

RWE2E-w/o multi-step - 15.7
RWE2E-w multi-step - 8.8
RWE2E-residual ) 74

(proposed)

Table 3: Comparison of the proposed residual-RWE2E model
with other state-of-the-art systems

System SV EER
i-vector/PLDA[13] 8.8
spectrogram-E2E[13] 7.8
RWE2E-residual (RWCNN-LSTM init) 7.4

7. Conclusion and Future Works

In this paper, we explained a phenomenon we defined as speaker
overfitting, in which speaker features extracted from embed-
ding models are overfitted toward speakers within the train set.
Successful adoption of residual connections was made by uti-
lizing pooling layers, which are often replaced in residual net-
works. Other techniques were examined, in terms of mitigating
speaker overfitting, leading to considerable performance im-
provement. Additionally, for the first time, a raw waveform
end-to-end DNN was verified to be valid in a text-independent
scenario. Furthermore, the proposed raw waveform end-to-
end DNN showed better performance than both i-vector/PLDA
and spectrogram-based end-to-end DNNs using the VoxCeleb
dataset.

Nevertheless, direct fundamental solutions such as altering
the objective function or new schemes for eliminating speaker
overfitting have not been discovered yet. Our future works will
be dedicated to finding these solutions.
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