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Abstract

We explore generative adversarial networks (GANs) for speech
separation, particularly with permutation invariant training
(SSGAN-PIT). Prior work [1] demonstrates that GANs can be
implemented for suppressing additive noise in noisy speech
waveform and improving perceptual speech quality. In this
work, we train GANs for speech separation which enhances
multiple speech sources simultaneously with the permutation
issue addressed by the utterance level PIT in the training of the
generator network. We propose operating GANs on the power
spectrum domain instead of waveforms to reduce computation.
To better explore time dependencies, recurrent neural networks
(RNNs) with long short-term memory (LSTM) are adopted for
both generator and discriminator in this study. We evaluated
SSGAN-PIT on the WSJO two-talker mixed speech separation
task and found that SSGAN-PIT outperforms SSGAN without
PIT and the neural networks based speech separation with or
without PIT. The evaluation confirms the feasibility of the pro-
posed model and training approach for efficient speech separa-
tion. The convergence behavior of permutation invariant train-
ing and adversarial training are analyzed.

Index Terms: permutation invariant training, generative adver-
sarial networks, speech separation

1. Introduction

Human auditory system has a mechanism for separating mixed
signals. Much research attention has been given to the topic
of employing the machine to emulate human auditory percep-
tion. However, the progress made in multi-talker mixed speech
separation, often referred to as the cocktail-party problem [2],
has been less impressive. More generally, source separation is
a relevant procedure in cases when a set of source signals of in-
terest has gone through an unspecified mixing process and has
been recorded at a single microphone or a microphone array.
Given the observed mixture signal, the objective is to invert the
unknown mixing process and estimate the individual source sig-
nals. Nevertheless, a truly general solution to source separation
does not exist, e.g., the mixing mapping may be non-invertible.

Great advance was observed in monaural speech separa-
tion when the problem is converted into a supervised regression
problem in which the optimization objective is closely related to
the separation task. Inspired by the great success of deep learn-
ing on speech recognition, the deep learning based techniques
have been developed to address the cocktail party problem re-
cently [3]. These new techniques significantly outperformed the
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conventional approaches, such as minimum mean square error
(MMSE) [4] suppressor, computational auditory scene analysis
(CASA) [5, 6], and non-negative matrix factorization (NMF)
[7, 8]. This framework and methodology works great for sep-
arating speech from noise and music, or speech of a specific
known speaker from that of other speakers.

A recent breakthrough in the deep learning generative
modeling field is generative adversarial networks (GANs) [9].
GANs have been successfully applied in the computer vision
field to synthesize realistic images. The exploration of GANs
on speech and audio has been limited. The speech enhance-
ment GAN (SEGAN), proposed in [1] yields improvements to
perceptual speech quality metrics over the noisy data and tradi-
tional enhancement baselines. This work has been further de-
veloped and evaluated by speech recognition in [10]. The gen-
erator network learns to model labeled data, e.g. the mapping
from noisy speech samples to their clean counterparts, while
the discriminator, usually a binary classifier, learns to discrimi-
nate between generated samples and target samples from train-
ing data. This framework is analogous to a two-player adver-
sarial game, where minimax is a proven strategy. The key idea
of GANS is to use the discriminator to shape the loss function
of the generator.

In this work, we study the benefit of GANs for speech
separation, where the generator network produces separated
speech sources, while the discriminator tries to discriminate
clean speech sources against enhanced speech sources. Unfor-
tunately, the neural network based speech separation encounters
the label ambiguity (or permutation) problem when applied to
separate multiple speech streams from the mixed speech signal.
As a result, the model cannot be effectively optimized and per-
forms poorly on the cocktail party problem. Permutation invari-
ant training (PIT) [11] is one of the most recent deep learning
based approaches which achieved very impressive performance
on addressing label permutation problem in speech separation.
PIT casts speech separation as a multi-class segregation prob-
lem where the supervision is provided as a set instead of an or-
dered list. The permutation invariant training is integrated with
the generator network, where the loss consists of an adversar-
ial component and the distance between each generated speech
source and its clean reference. Through the adversarial learning,
it drives both models to improve their accuracy until generated
samples are indistinguishable from real ones. To the best our
knowledge, it is the first work on GANs for speech separation,
particularly integrated with permutation invariant training.

The rest of the paper is organized as follows. In Section 2,
the monaural speech separation is reviewed. In Section 3, we
present details of our proposed generative adversarial networks
with permutation invariant training for speech separation and
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Figure 1: Training diagram of SSGAN. Generator G maps
mixed speech spectra to separated speech sources (“Enhanced
Speech 1 and “Enhanced Speech 2”). D receives as input ei-
ther concatenated components in the yellow or green box and
decides if the triplet is real or enhanced

discuss its advantages. We describe our experimental setup and
evaluate the effectiveness of the proposed system in Section 4.
We conclude this work in Section 5.

2. Monaural Speech Separation

The goal of monaural speech separation is to estimate the in-
dividual source signals from the mixture. Let us denote the .S
source signals in the time domain as zs(t),s = 1,...,S and
the microphone received mixed signal as y(t) = Ele zs(t).
The corresponding spectrum representation by short-time
Fourier transform (STFT) is Y (¢, f) = Zle X(t, f) for
each time frame ¢ and frequency subband f. Monaural speech
separation is to recover each X;(¢, f) from Y (¢, f). More
specifically, we train a deep learning model g(-) such that
g(log|Y|%,0) = Ms,s = 1,...,S, where  is the model
parameter. We use log power spectrum for representing in-
put noisy signal and the model infers idea ratio mask (IRM)
M,. M(t,f) > 0and 3% | M,(t,f) = 1 for all time-
frequency bins (¢, f). We then estimate source spectrogram
|X| as |Xs| = M, ® |Y|, where ® is the element-wise prod-
uct of two operands. Due to the issue of zero-division in si-
lence segments for label preparation, the cost function for regu-
lar deep learning based monaural speech separation is

S
o . i
Jss = m; I N @ Y| — X % ()

where || - || Frobenius norm. For simplicity and without lose
of generality, we assume there are two-talkers in the signal mix-
ture, i.e. S = 2 in the following discussion.

3. SSGAN-PIT

GAN:Ss consist of two components, a generator and a discrimi-
nator. The generator G maps latent vectors drawn from some
known prior p. to samples: G : z — &, where z ~ p.. The
way in which G learns to do the mapping is by means of an ad-
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Figure 2: Training diagram of SSGAN-PIT. The permutation
invariant training is carried out in the training of generator G.

versarial training, where we have another component, called the
discriminator (D). D is in charge of transmitting information to
G on what is real (z ~ pgqtq) and what is fake (G(z) ~ pa),
such that G can slightly correct its output waveform towards
the realistic distribution, getting rid of the noisy signals as those
are signaled to be fake. In this sense, D can be understood as
learning some sort of loss, for G’s output to look real.

We propose to improve speech separation with GANs. In
this model, the generator network G performs speech separa-
tion. It learns an effective mapping that can imitate the real
speech distribution X’ to generate novel samples related to those
of the training set. For speech separation, we used the con-
ditional GANs, where the mixed speech signal Y is incorpo-
rated as conditional information in G and D. The outputs
of the generator are the individual enhanced speech signals
|X,| = G(z,log|]Y|?),s = 1,...,5. Unlike speech denois-
ing, the network GG generates all the individual sources. G is
designed to be an LSTM-RNN, similar to that used in the base-
line monaural speech separation. D is an LSTM binary classi-
fier whose input is either real samples, coming from the clean
speech source dataset that G is imitating, or fake samples made
up by G, i.e. enhanced individual sources. Specifically, the in-
put to discriminator D is frame-wise concatenation of log power
spectrum of the mixed signal and each individual clean (gen-
erated) signal, as shown in the yellow (green) box in Fig. 1,
respectively.

It has been reported that the SEGAN generator learned to
ignore the latent noise vector z . According to [10], the latent
vector is not assumed given the presence of noise in the input Y.
We removed the latent vector from the generator. The training
objective is simplified to be:

Lecan (G,D) = By, X, ~vpaara logD([Y], | Xs=1:5])]
+Ey apyara log(1 — D(|Y], G(log]Y*)))] (2)
G is trained to minimize this objective, while D is trained to
maximize it.
In order to minimize the distance between the output of gen-

erator and the reference speech source X5,s = 1,...,5, we
add a distortion term which leads to the new objective function

mGin max V(G,D) = Jss + AMcaan (G, D), 3)



where Jsg is the monaural speech separation criterion defined
in (1). This improved objective function encourages the ad-
versarial component to generate more fine-grained and realis-
tic samples. The importance of the two terms is balanced by
a hyper-parameter A\. The whole training architecture is illus-
trated in Fig. 1. The generator on the left is based on a monaural
speech separation model with an adversarial discrimination by
the network D.

In order to stabilize training and increase the quality of gen-
erated samples in G, we refer to [1] to substitute the traditional
GAN loss function with the least-square GAN objective. With
this, the formulation for SSGAN in Eq. (3) changes to

. 1
min Viscan (D) =3By, X, ~puoea (D(Y ], [Xo=1:5]) = 1)7]

2
1
+ 5 E¥pora [D(Y ], Gllog|Y[*))?)
“4)
min Viscan(G) :%Eywazam [(D(Y], G(log|Y|*)) — 1)?]
+ Jss ®)

The generator G has multiple output layers, one for each
mixing source, as shown in Fig. 1. Since both output lay-
ers depend on the same input mixture, reference assigning can
be tricky especially if the training set contains many utterances
spoken by many speakers. This problem is referred to as the
label ambiguity (or permutation) problem. To address the la-
bel ambiguity problem, the permutation invariant training (PIT)
was proposed in [11]. The architecture of PIT is shown as the
left part of Fig. 2 which is integrated with generator G. In
order to associate references to the output layers, the total num-
ber of S! possible assignments between the references and the
estimated sources are determined. We then compute the total
MSE for each assignment, which is defined as the combined
pairwise MSE between each reference | X| and the estimated
source | X|. The assignment with the least total MSE is cho-
sen and the model is optimized to reduce this particular MSE.
In this work we adopt to use utterance-level Permutation Invari-
ant Training (uPIT) [12], a simpler yet more effective approach
to solve the tracing problem and the label permutation problem
than original PIT. Specifically, we extend the frame-level PIT
technique with the following utterance-level cost function:

S

1 N
DM@ Y] = [Xge o] |7 (6)
s=1

‘7¢*:T><F><S

where ¢* is the permutation that minimizes the utterance-level
separation error defined as

s

¢ = argggg; 1M @ Y] = [ Xoo| 7 )
and P is the set of all S! permutations. With uPIT, the permu-
tation corresponding to the minimum utterance-level separation
error is used for all frames in the utterance.

The permutation invariant training is implemented in SS-
GAN by updating the speech distortion term in the objective
function (5) as below

. A
min Vrscan (G) =5 By ~piaca [(D(Y], G(log|Y[*)) = 1)°]

+ Jg= (®)

where Jg+ is the loss of utterance based PIT defined in (6). Fig.
2 describes the training strategy of SSGAN-PIT.
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Figure 3: Spectrograms showing SSGAN trained with PIT can
separate a two-speaker mixture

4. Experimental Results
4.1. Corpora

To study the capability of the proposed technique, we conducted
experiments with mixtures of two speakers on the WSJO-2mix
dataset. The WSJO-2mix dataset was introduced in [13] and was
derived from the WSJO corpus [14]. The 30h training set and the
10h validation set contain two-speaker mixtures generated by
randomly selecting from 49 male and 51 female speakers and
utterances from the WSJO training set si_tr_s, and mixing them
at various Signal-to-Noise Ratios (SNRs) uniformly chosen be-
tween 0 dB and 5 dB. The 5h test set was similarly generated
using utterances from 16 unseen speakers from the WSJO vali-
dation set si-dt_05 and evaluation set si_et_05. We evaluated the
baseline approaches and the proposed scheme on both close-
condition test set (10h validation set) and open-condition test
set (5h test set).

4.2. Architecture

The STFT of waveform signal is computed with a 32-ms win-
dow and shifted every 16ms. The generator GG loads the 257
dimensional normalized log power spectrum, followed by 3
LSTM layers with 512 units per layer, one fully connected layer
of 512 hidden units using rectified linear unit (ReLU) nonlinear-
ity and a sigmoid output layer. Phase sensitive approximation
[15] infers 257 dimensional real mask in the output layer.

The same network architecture is applied onto discrimina-
tor D except for the dimension of input feature layer and the
output layer. As proposed in Section 3, we stack up normal-
ized log power spectrum of mixed signal and individual sources
as the input features for D. Therefore, the dimension of in-
put layer is 257 x (S + 1), where S is the number of mixed
speech sources. Since two-source mixtures are employed in our
evaluation, S equals to 2. The output label for D is 1 for real
triplets (mixture-two clean sources) and 0 for fake (mixture-two



Table 1: PESQ and SDR evaluation on WSJO-2mix.

CcC oC
Method PESQ SDR | PESQ SDR
Original 1.86 2.09 1.89 2.12
Baseline SS 2.18 9.05 2.17 8.73
SSGAN 2.20 9.17 2.17 8.79
SS-PIT 2.40 11.14 2.39 10.86
SSGAN-PIT 2.44 11.26 2.41 10.90
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Figure 4: The loss convergence of adversarial and distortion
terms.

enhanced sources) triplets.

4.3. Training

During GAN based training (SSGAN and SSGAN-PIT), for
each mini-batch that contains 128 randomly selected utterance
samples we alternate and update the D and GG. To ensure the
training converges to a good result efficiently, two different loss
functions of GG are used at two stages. For the first 5 epochs
G is updated based on loss of speech distortion only, i.e. A is
set to 0. For the rest epochs, we set the importance weight to
0.1 which makes G keep correcting its output towards realistic
generation. Results on different settings are also discussed in
section 4.4. The whole network is trained for 80 epochs with
Adam optimizer. The learning rate is initially set at 0.001 for
training both generator and discriminator and then scaled down
by 0.7 for every 20 epochs. A dropout with rate 0.2 is applied
on each hidden layer in both G' and D networks.

4.4. Results and Discussion

The SSGAN-PIT is evaluated on its potential to improve the
Signal-to-Distortion Ratio (SDR) [16] and the Perceptual Eval-
uation of Speech Quality (PESQ) score [17], both of which are
metrics widely used to evaluate speech separation tasks. As an
example of SSGAN-PIT, Fig. 3 shows the spectrogram for a
two-speaker (male-vs-female) test case.

In Table 1 we summarized the PESQ and SDR from differ-
ent separation schemes for two-talker mixed speech in closed
condition (CC) and open condition (OC). For a fair comparison,
all approaches have been trained for 80 epochs. From Table
1 we can make several observations. First, SSGAN-PIT out-
performs baseline monaural speech separation, its GAN based
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Table 2: Evaluation of SSGAN-PIT by changing the inputs of
D to pairs of source signals ([s1, s2]) and individual source
signals ([s1] and [s2]).

| cc | oc
Inputof D' pEsq — SDR | PESQ  SDR
(Imix,sl,s2]) | 244 1126 | 241 10.90
(51, s2]) 243 1122 | 240 1080
([s1], [s21) 245 1128 | 241 1074

training and PIT based training, respectively. Second, with
PIT, GAN based speech separation achieves a significant im-
provement when compared with that without PIT. This indicates
that the permutation invariant training of spectral distortion is
more critical than adversarial training, and furthermore the in-
tegration of the two achieves the best separation result. Third,
the speech separation benefits from the adversarial training al-
though the additional gain upon PIT is small. Fourth, same as
the baseline approaches, SSGAN-PIT generalizes well on un-
seen speakers since the performances on the open and closed
conditions are very close. We report the explorations on the in-
put features to the discriminator D in Table 2. Compared with
the concatenation of the mixture and individual sources ([mix,
s1, $2]), two other variations are evaluated. All of them essen-
tially perform similarly well. We observed that D converges
faster on the proposed triplet ([mix, s1, s2]) than the two alter-
natives, probably due to the fact that such triplet encodes rela-
tionship between input components that is trivial to distinguish
since s1 + s2 = max holds for real instances.

In Fig. 4 we present the SSGAN-PIT training progress as
measured by the adversarial and spectral distortion loss, respec-
tively, on the two-talker mixed speech training set WSJO-2mix.
The discriminator D converges to being perfectly discriminat-
ing “real” and “fake” clean speech samples as the loss on “real”
(blue) and “fake” (red) samples converges to zero, respectively.
In contrast, good performance of D raises the difficulty for the
output of G to fool D, as indicated by the adversarial term in
the loss of G (green). Nevertheless, the spectral distortion loss
(black) is steadily decreasing as a function of batches, hence
SSGAN-PIT, effectively separates the mixed speech sources.

5. Conclusions

In this paper, we proposed a novel scheme for monaural speech
separation with adversarial and permutation invariant training.
The experiment shows that the presented SSGAN-PIT outper-
forms those without adversarial and/or permutation invariant
trainings. Although the evaluation was conducted for two-
speaker mixture separation only, the presented training frame-
work can handle mixtures with more than two speakers which
will be studied in further experiments. In the context of speech
separation, we explored to understand the behavior of the gener-
ator and discriminator through the convergence of both the ad-
versarial loss and spectral distortion. As indicated in [10], train-
ing SEGAN with only the spectral distortion objective achieves
better ASR performance than using the adversarial approach.
As a next step, we will evaluate ASR performance on speech
mixtures processed by SSGAN-PIT. Furthermore, we will in-
vestigate methods to balance G and D in the GAN training for
the better results.
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