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Abstract

In this paper, we propose a variational recurrent neural network
(VRNN) based method for modeling and generating speech pa-
rameter sequences. In recent years, the performance of speech
synthesis systems has been improved over conventional tech-
niques thanks to deep learning-based acoustic models. Among
the popular deep learning techniques, recurrent neural networks
(RNNs) has been successful in modeling time-dependent se-
quential data efficiently. However, due to the deterministic na-
ture of RNNs prediction, such models do not reflect the full
complexity of highly structured data, like natural speech. In
this regard, we propose adversarially trained variational recur-
rent neural network (AdVRNN) which use VRNN to better
represent the variability of natural speech for acoustic model-
ing in speech synthesis. Also, we apply adversarial learning
scheme in training AAVRNN to overcome oversmoothing prob-
lem. We conducted comparative experiments for the proposed
VRNN with the conventional gated recurrent unit which is one
of RNN:ss, for speech synthesis system. It is shown that the pro-
posed AdVRNN based method performed better than the con-
ventional GRU technique.

Index Terms: speech synthesis, variational recurrent neural
network, adversarial learning, acoustic modeling, AVRNN

1. Introduction

With recent advancement in applications for human-machine
interaction, speech synthesis system with advanced perfor-
mance became an essential component with high demand. Deep
learning based speech synthesis system has shown impressive
improvements in performance compared to the hidden Markov
models (HMMs)-based speech synthesis [1]. Various deep
learning techniques were proven to express nonlinear relation
between text and speech. Since speech has complex time-
dependencies, recurrent neural networks (RNNs) with long
short term memory (LSTM) [2, 3, 4], simplified LSTM [5], or
gated recurrent unit (GRU) [5, 6, 7] have been applied to im-
prove the performance in acoustic modelling.

Although nonvariational RNNs introduced in [2, 3, 6] im-
proved the performance over the non-recurrent deep neural net-
works, such methods have difficulty in capturing the variability
in data due to the entirely deterministic structures. To model
the variability in highly structured sequential data such as natu-
ral speech or handwriting, variational recurrent neural network
(VRNN) is introduced in [8]. The VRNN generates an esti-
mated input-like sequence conditioned on latent random prior
and RNN state variable.

In this paper, we propose an acoustic modelling technique
using the adversarially trained variational recurrent neural net-
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work (AdVRNN) as an alternative to the conventional RNNs
for statistical parametric speech synthesis (SPSS). Unlike the
VRNN, the proposed AdVRNN for SPSS takes the input of
a linguistic feature sequence with the latent random prior and
the RNN state variable. AdVRNN for SPSS generates not a
sequence of linguistic features but a sequence of acoustic fea-
tures. In this regard, AAVRNN is closer to the encoder-decoder
model in [6] than an autoencoder. The AdVRNN is capable of
modeling variability in a sequence efficiently than the vanilla
encoder-decoder model due to latent random variable.

For training AdVRNN, an adversarial training scheme sim-
ilar to the generative adversarial networks [9] is employed to
capture the detailed structure of real acoustic features. A dis-
criminator is introduced during the training phase to distinguish
the generated acoustic feature sequence from the real data se-
quence. In order to avoid oversmoothing, which is one of the
major problems in speech synthesis, a method to reducing the
cost of discriminator was used instead of maximizing the vari-
ational lower bound. Unlike the sampled noise prior in [9], a
latent random variable inferred from linguistic features and the
RNN state variables are used to generate acoustic features in
AdVRNN. It is shown that the proposed method performs bet-
ter than the conventional RNN based speech synthesis such as
GRU for both objective and subjective measure. The detailed
structure and training scheme of the AAVRNN for SPSS is in-
troduced in Section 3.

2. Background

In this section, we will give a brief review of the conventional
VAE and VRNN.

2.1. Variational Autoencoder

Employing the structure of autoencoder, where the network
aims at generating the input at the output layer, VAE introduces
latent random variable to apply stochastic component in autoen-
coder and to model the variations in observations [10]. VAE is
composed of an encoder network which maps the observed data
x to latent random variable z, and a decoder network which
maps the latent random variable z to the output x same as the in-
put. The prior distribution of latent random variable z is usually
assumed to be standard Gaussian. In speech application, usually
the observation is acoustic parameters. However, the difficulty
in VAE comes from the intractability in inferencing the poste-
rior distribution p(z|x). To overcome this challenge, VAE em-
ploys the variational approximated posterior ¢(z|x) with neural
network. Using ¢(z|x), the variational lower bound is derived
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as follows:

logp(x) 2= — Dxe(q(zx)||p(z))

+Eq(z\x) [lng(X|Z)} (D
where Dy, refers to Kullback-Leibler divergence (KL diver-
gence) between ¢(z|x) and p(z|x), measuring the similarity
between the two distributions. Such KL divergence in the RHS
of (1) implies the regularization of the encoder parameters, and
the remaining term in the RHS refers to the reconstruction er-
ror between input and output of VAE. The reconstruction error
forms as the VAE decoder network generates the input obser-
vation x from the z with distribution log p(x|z). Both encoder
and decoder are jointly trained by maximizing (1).

2.2. Variational Recurrent Neural Network

With highly structured sequential data, VAE can be extended
into a recurrent framework. This idea, known as the VRNN, can
model highly nonlinear dynamics of sequential data and capture
the time dependency of sequences [8]. Similar to VAE, VRNN
is composed of an encoder and a decoder.

2.2.1. Decoder

Unlike the VAE, the prior of the latent random variable z; of the
VRNN is not standard Gaussian distribution but conditioned on
RNN state variable h;_1 as follows:

p(zt) = N(IU/P,M Uzzj,t)a
[ﬂp,h U:Dt] = (ppri(htfl) (2)

where [y ¢, 0p,+ denote the mean and standard deviation of prior
distribution and P"* denotes neural network which models the
prior distribution. The latent random variable can capture time
dependency context using h;_; in prior distribution. For the
generation model distribution p(x¢|z) is conditioned on z; and
h;_; as follows:

p(xt|z:) = N (pia b, Ui,t)7

(bt 0,6 = (67 (24), i) 3
where [iz,¢, 0z ¢+ denote the mean and standard deviation of gen-
eration model distribution and ¢ is a deep neural network
which captures the generation model distribution and ¢~ is an
embedding network of z;. RNN state variable h., uses previous
state variable h;_1 and x:, z; for updating the state variable as

follows:
hy = "(¢" (xt), 6" (2¢), hu—1) 4

where "¢ is a state transition function in the RNN and ¢” is
embedding networks of x;.

2.2.2. Encoder

The inference model for encoder network at time t can be
expressed using variational approximation posterior q(z|x:)
which is a function of x; and h;_; as follows:

q(2ze]%1) = N (piz e, Uz,t)a

(2,65 02,6] = (0" (x¢), hy—1). 5

where p..¢,0. ¢ denote the mean and standard deviation of
q(z¢|x¢) and "¢ is the deep neural network which capture
approximated posterior distribution.
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Figure 1: Graphical representation for AAVRNN opearation.

2.2.3. Variational Lower Bound

For learning, the variational lower bound in (1) is modified as
follows due to time dependency:

T
Eq(ze,lxcs) [ZGDKL(q(zt\xSt,Z<t>\|p<zt|z<t,><<z>>

t=1

+ log p(x¢|z<t, X<t)) |-
(6)

The concepts of variational lower bound of VRNN is same as
VAE which consist of KL divergence term which regularize the
encoder parameters and reconstruction error term.

For more details about VAE and VRNN such as reparame-
terization tricks, the reader is refereed to [10, 8].

3. Speech Synthesis Using AAVRNN

Using the idea of VRNN, we propose an AdVRNN based
speech synthesis technique which can model the complex non-
linear relation between linguistic feature sequence and acoustic
feature sequence effectively. In this section, the structure of the
acoustic model and the training procedure of the proposed tech-
nique are described.

3.1. AdVRNN based Acoustic Modeling

Using the aforementioned VRNN from section 2, observations
can be generated using a latent random variable. Since a typi-
cal acoustic model in speech synthesis system takes a linguistic
feature sequence as input and generates an acoustic feature se-
quence as output, the VRNN formulation is modified for speech
synthesis application in a way shown in Figure 1.

3.1.1. Decoder

The prior distribution follows the same as (2). However, due
to the mapping between linguistic feature sequence and acous-
tic feature sequence in speech synthesis, the generation model
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Figure 2: Overall training procedure of AAVRNN.

distribution is conditioned not only on z; and h;_; but also on
linguistic feature 1; as follows:

p(xtlze, 1) = N (e, 02 1),
™ (6% (z¢), 0" (1t), he—1)

@)

[,U’Z,h O—Z»t] -
where ¢' is the embedding network of 1,. Applying the simi-
lar modification, the state update equation in RNN can be ex-
pressed as follows:
ht ==

(8" (L), ¢° (ze), hy—1). (8)

Note that the above state update is missing x; since in synthe-
sis stage, the error in synthesized speech propagates throughout
the timesteps and can amplify the error to cause performance
degradation.

3.1.2. Encoder

The true posterior is a function of 1; and h;—; and can be ap-
proximated with g(z|1;) as follows:

q(Zt‘lt) = N(/lz,ty O’?,t%

[,uz,t,Uz,t] = wenc(¢l(1t),ht71)- &)

3.2. Training Procedure

The variational lower bound for AAVRNN can be derived using
a similar approach to (6). However, the variational inference
method is known to blur the generated samples [9, 11, 12]. In
speech synthesis, this can cause oversmoothing of the generated
speech which makes synthesized speech muffled. In this paper,
we propose to use adversarial schemes to overcome the over-
smoothing problems as in Figure 2. In figure 2, brown, blue,
purple, green lines indicate the prior model, generation model,
recurrent model, and inference model respectively as mentioned
in section 3.1.

Following a typical generative adversarial network, the pro-
posed method uses a discriminator to distinguish the followings:

1. For areal data sequence x <, generate the corresponding
latent variable sequence Z<; using inference model as
defined in (9)

2. Generate X<; and z<; from the generation model and
the prior model as defined in (2) and (7), respectively.
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Then, a discriminator is built to discriminate between {xt, Zt}
and {it, Zt}.

Discriminating {z¢, Z:} is similar to KL divergence in
(6) and discriminating {x¢, X¢} is similar with reconstruction
term in (6) where it has similar meaning with variational lower
bound. The rest of training procedure follows the same as typi-
cal GAN training[9].

4. Experiments

In order to evaluate the performance of the proposed AAVRNN
based speech synthesis system, several experiments on ob-
jective measurements and subjective listening tests were con-
ducted.

For the experiments, a Korean speech database spoken by
a male speaker was applied. Speaker provided 2,250 utter-
ances of narrative speech data amounting to about 230 minutes.
Among 2,250 utterances we use 2,000 utterances for training
and 200 utterances for validation and 50 utterances for test.
Each utterance was sampled at 16kHz and 20 ms Hamming
window was applied with 5 ms frame shift for acoustic fea-
ture extraction. STRAIGHT vocoder were used to extract the
acoustic feature [13]. For the spectrum feature, 25th-order mel-
scaled cepstrum vector was used, and for the excitation feature,
1-dimensional logarithmic fundamental frequency (1f0) and 5-
dimensional band aperiodicity (bap) were used. To make a con-
tinuous 1f0 sequence, the I1fO values of the unvoiced region were
filled during the normalization process. Also dynamic feature A
and AA were attached for each features. The extracted acous-
tic feature is normalized to follow white Gaussian in order to
use the acoustic feature as the target x; for the speech synthesis
systems. For input linguistic feature, 547-dimensional binary
feature for categorical linguistic contexts and 12-dimensional
numeric feature for numerical linguistic contexts, position and
duration were used together.

We used a deep hybrid GRU-based deterministic system for
baseline speech synthesis to compare the performance. For sim-
plicity we will call deep hybrid GRU as hybrid GRU or GRU.
Such hybrid system was configured to have two GRU layers
above two feedforward hidden layers with rectified linear unit
(ReLU). Every layer is consisted of 256 nodes. For training
the GRU-based speech synthesis system, the Adam optimizer
in [14] was used.

For AdVRNN the configurations of model is as follows:



« ¢!, ¢*: two hidden layers with 256 ReLU nodes.
¢ ¢": two hidden layers with 512 ReLU nodes.

o ©P": two feedforward hidden layers with 256 ReLU
node. The output layer is composed of linear layer for
tp,t and softplus layer for o, .. The dimension of the
latent random variable z; is 256.

dec

e two feedforward hidden layers with 1024 tanh
nodes. The output layer is composed of linear layer for
e ,¢ and softplus layer for o ¢.

enc

e " two feedforward hidden layers with 512 ReLU
nodes. The output layer is composed of linear layer for
1z,¢ and softplus layer for o ;.

¢ For RNN, we use a GRU with 32 nodes.

» For discriminator, four feedforward hidden layers with
the bottom three feedforward layers composed of ReLU
layers with 256 nodes and the top feedforward hidden
layer of a ReLU layer with 128 nodes were used. The
output layer is 1 -dimensional sigmoid layer to output
whether the inputs is real or not.

We used Adagrad optimizer in [15] to train AVRNN and we
used Tensorflow[16], a library for deep learning, for both GRU
and AdVRNN implementations in our experiments.

Table 1: Objective measurement of comparative models.

[ MCD [ RMSE of f0 [ bap distance

6.203 23.061 2.420
5.808 24.386 2.312

GRU
AdVRNN

4.1. Objective performance evaluation

We compared the outputs of the two algorithms mentioned
above: the conventional GRU approach and the proposed Ad-
VRNN approach. For objective measure, we used averaged
mel-cepstral distance (MCD) in dB scale, root mean square er-
ror (RMSE) of f0 in Hz, and bap distance. The results of the
objective performance tests are shown in Table 1.

The results show that the AAVRNN approach is more effec-
tive for modeling highly structured speech data than GRU ap-
proach. However, the performance of GRU is better in RMSE
of fO measurement. We consider the reason for fO degradation
is due to the unvoiced part in normalization process. The inter-
polated part of unvoiced region to make continuous If0 does not
account for a real If0 value, and this can influence the 1f0 decod-
ing process. Therefore, the performance of the proposed system
related to fO could be improved if an accurate continuous pitch
contour is available.

Table 2: Results of MOS test: GRU and AAVRNN based speech

synthesis.

| GRU | AdVRNN
MOS [ 2.836 £ 0.946 [ 3.623 +0.955

4.2. Subjective performance evaluation

We also performed a subjective listening test to compare the
AdVRNN with the GRU based speech synthesis. 11 partici-
pants listened to 20 sentences from each method, in which the

920

sentences were randomly chosen from 50 test sentences. Each
listener was provided with the speech samples in a random or-
der and was asked to measure the speech quality in terms of the
mean opinion score (MOS). Each subject provided scores in the
range of [1,5] with a large value indicating high performance.
The results are shown in Table 2 from which we can find that the
proposed method outperformed the conventional GRU method.
From this results it is shown that the AAVRNN has better intel-
ligibility and quality than the discriminative GRU model.

5. Conclusions

In this paper, we proposed using a VRNN as an alterna-
tive method for acoustic modeling in speech synthesis system.
Since speech contains high variability information, we apply
the VRNN, which can express the variability within the highly
structured data efficiently. Also, instead of using the conven-
tional variational lower bound, we used adversarial training
scheme to increase dynamic range for synthesized speech data.
We call this VRNN with adversarial training scheme as Ad-
VRNN. From the experimental results, it is shown that the pro-
posed AdVRNN based method outperforms the conventional
RNN-based method for acoustic modeling.
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