
Cosine Metric Learning for Speaker Verification in the i-Vector Space

Zhongxin Bai, Xiao-Lei Zhang, and Jingdong Chen

Center for Intelligent Acoustics and Immersive Communications and
School of Marine Science and Technology, Northwestern Polytechnical University
zxbai@mail.nwpu.edu.cn, xiaolei.zhang9@gmail.com, jingdongchen@ieee.org

Abstract
It is known that the equal-error-rate (EER) performance of a
speaker verification system is determined by the overlap region
of the decision scores of true and imposter trials. Also, the co-
sine similarity scores of the true or imposter trials produced by
the state-of-the-art i-vector front-end approximate to a Gaussian
distribution, and the overlap region of the two classes of trials
depends mainly on their between-class distance. Motivated by
the above facts, this paper presents a cosine similarity learn-
ing (CML) framework for speaker verification, which com-
bines classical compensation techniques and the cosine simi-
larity scoring for improving the EER performance. CML min-
imizes the overlap region by enlarging the between-class dis-
tance while introducing a regularization term to control the
with-in class variance, which is initialized by a traditional chan-
nel compensation technique such as linear discriminant analy-
sis. Experiments are carried out to compare the proposed CML
framework with several traditional channel compensation base-
lines on the NIST speaker recognition evaluation data sets. The
results show that CML outperforms all the studied initialization
compensation techniques.

Index Terms: speaker verification, cosine metric learning,
channel and session compensation.

1. Introduction
A speaker verification system consists of two parts, i.e., a front-
end and a back-end [1–3]. The front-end extracts identity fea-
tures from a speaker utterance. The state-of-the-art identity
feature extractor is the factor analysis [1], which extracts iden-
tity vectors (i-vectors) from the output supervectors of either a
Gaussian mixture model (GMM) based universal background
model (GMM-UBM) or a deep neural network based UBM
[4–6]. Another popular front-end, called deep vector (d-vector),
takes the average of the activations of the last hidden layer of a
DNN as the speaker feature [7–9].

The back-end verifies the similarity of two speakers by eval-
uating the similarity of their identity features. Common back-
ends include the cosine similarity scoring, support vector ma-
chines, and probabilistic linear discriminant analysis (PLDA).
As the output of a front-end is both inter-session and speaker de-
pendent, statistical techniques are usually employed to compen-
sate channel or session variability before scoring. Compensa-
tion techniques include linear discriminant analysis (LDA) [10],
within class covariance normalization (WCCN) [11] and nui-
sance attribute projection (NAP) [12]; however, these compen-
sation techniques do not have a direct connection to the final
scoring result of speaker verification.

Metric learning was proposed to combine compensation
methods with scoring methods [13, 14], which aims to reduce
the within-class variation and maximize the between-class dis-
tance. In [15], Fang et al. also employed neighborhood com-

ponent analysis to learn a projection matrix that minimizes the
average leave-one-out k-nearest neighbor classification error.
Some recent works attempt to train the front-end and back-end
jointly by end-to-end deep learning. For example, the meth-
ods for text-dependent speaker verification [16,17] learn a deep
model that maps a pair of enrollment and test utterances directly
to a cosine similarity score. In [18], David et al. applied a
similar end-to-end framework that jointly trains a deep neural
network front-end and a PLDA-like back-end.

Motivated by the work in [19], we propose in this paper a
metric learning method, named cosine metric learning (CML),
for speaker verification. It combines traditional compensation
methods with the cosine similarity scoring method for improv-
ing the equal error rate (EER). The proposed method takes a
linear transform A0 produced from a compensation method as
its initialization, and learns a new linear transform A that min-
imizes EER directly by minimizing the overlap region of the
decision score distributions between true trials and imposter tri-
als. Experimental results on the NIST speaker recognition eval-
uation (SRE) corpora show that the proposed method can com-
bine traditional compensation methods with the cosine similar-
ity scoring method effectively for optimizing the EER perfor-
mance.

Note that the focal point of this paper is on describing a
general metric learning approach instead of an end-to-end deep
learning method. As will be shown later, CML can be extended
to end-to-end deep learning.

2. Cosine metric learning
The probability distribution of the decision scores produced
from an i-vector speaker verification system is illustrated in Fig.
1. One can see from this figure that the scores produced from
the true and imposter trials can be modeled approximately by
two Gaussian distributions respectively. The performance of
the system is then determined by the overlap region between
the two distributions. Since the overlap region is determined
by the distance between the means of the two distributions, i.e.
between-class distance, and the within-class variance of the two
distributions, the proposed CML aims to reduce the overlap re-
gion by enlarging the distance between the means of the two
distributions, thereby improving the verification performance.

2.1. Optimization objective

In the development stage, assume that we have a development
set {xi, yi, li}N

i=1, where xi and yi are a pair of speakers, li is
the ground-truth similarity of the two speakers, and N denotes
the total number of speaker pairs. If xi and yi come from the
same speaker, then li = 1; otherwise li = −1. Furthermore,
the index sets of the true trials and imposter trials are denoted by
pos = {i|li = 1}N

i=1 and neg = {i|li = −1}N
i=1, respectively.

In the test stage, suppose that xtarget and xtest represent the
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Figure 1: Probability distribution of the decision scores pro-
duced by an i-vector/cosine speaker verification system. “Pos-
itive” denotes the true trials, “Negative” denotes the imposter
trials.

i-vectors of a target and a test speaker, respectively. Given a lin-
ear transform A that is used to compensate channel and session
variability, the cosine similarity scoring back-end is written as:

S(xtarge, xtest, A) =
⟨Axtarget, Axtest⟩

∥Axtarget∥∥Axtest∥
. (1)

The proposed CML method aims to maximize the distance
between the means of the decision scores of the true trials and
imposter trials by optimizing A in the development stage. A
possible optimization cost function is defined as follows:

f(A) = max
A

1

|pos|
∑

i∈pos

S(xi, yi, A)− 1

|neg|
∑

i∈neg

S(xi, yi, A),

(2)
where |pos| and |neg| denote, respectively, the size of pos and
neg. However, directly maximizing (2) may lead to a large vari-
ance of the score distribution. To control the variance of the
score distribution, we add a regularization term ∥A − A0∥2 to
(2), i.e.,

f(A)=

max
A

1

|pos|
∑

i∈pos

S(xi, yi, A) − 1

|neg|
∑

i∈neg

S(xi, yi, A)

−γ∥A − A0∥2, (3)

where γ is a hyperparameter and A0 is a predefined matrix,
which can be any linear transform produced from a traditional
compensation technique, such as LDA, WCCN, and NAP. With
a simple mathematical manipulation, (3) can be rewritten as:

f(A) = max
A

∑

i∈pos

S(xi, yi, A) − α
∑

i∈neg

S(xi, yi, A)

− β∥A − A0∥2,

(4)

where α = |pos|
|neg| and β > 0 are two hyperparameters. β is a

free parameter that makes a trade-off between the optimization
of A and its negative effect, i.e. enlarging the Gaussian variance
of the decision scores. When β tends to infinity, A approaches
to A0. In other words, the performance of the proposed method
is lower-bounded by its initialization method, which can be
LDA, WCCN, NAP, etc.

Algorithm 1 Steepest descent algorithm for the CML back-end.

Input: Training pairs {xi, yi, li}N
i=1; predefined matrix A0;

initial value of the optimization target A(0); hyperparam-
eters α and β; constant ϵ > 0;

Output: The best variability compensation matrix A∗;
1: Initial iteration index k = 0;
2: repeat
3: Compute gradient directions ∇f(A(k));
4: Compute a step size λk via exact line search [20];
5: Compute the next point A(k+1) = A(k)+λk∇f(A(k));
6: k = k + 1;
7: until (||∇f(A(k))|| < ϵ)

2.2. Optimization algorithm

We use a gradient descent algorithm to solve problem (4). The
gradient of f(A) is:

∇f(A) =
∑

i∈pos

∂S(xi, yi, A)

∂A
− α

∑

i∈neg

∂S(xi, yi, A)

∂A

− 2β(A − A0),

(5)

where

∂S(xi, yi, A)

∂A
=

∂

{
xT

i AT Ayi√
xT

i AT Axi

√
yT

i AT Ayi

}

∂A
(6)

For clarity, we denote the numerator and denominator of (6) by
u(A) = xT

i AT Ayi and v(A) =
√

xT
i AT Axi

√
yT

i AT Ayi,
respectively. It follows then that:

∇
(

u(A)

v(A)

)
=

1

v(A)

∂u(A)

∂A
− u(A)

v(A)2
∂v(A)

∂A
(7)

∂u(A)

∂A
= A(xiy

T
i + yix

T
i ) (8)

∂v(A)

∂A
=

√
yT

i AT Ayi√
xT

i AT Axi

Axix
T
i +

√
xT

i AT Axi√
yT

i AT Ayi

Ayiy
T
i (9)

Substituting (6) to (9) into (5) gives the final gradient of f(A).
We apply the steepest descent algorithm to solve this opti-

mization problem, which is summarized in Algorithm 1.

3. Experiments
3.1. Dataset

All experiments were carried out on NIST 2006 SRE (8conv
condition) and NIST 2008 SRE (8conv condition). Both of
those are eight two-channel conversation excerpts. Each con-
versation involves the target speaker on their designated sides.
A speaker utterance in a conversation is 1 to 2 minutes long
after removing the silence segments by voice activity detection
(VAD), where we took the automatic-speech-recognition (ASR)
transcript as its VAD label. We divide all the speech signals into
15 second segments.

3.1.1. Development data

We used NIST 2006 SRE data (8conv condition) for develop-
ment, which include 402 female speakers and 297 male speak-
ers. There are a total of 24043 segments for the female speakers
and 17765 segments for the male speakers. These data are used
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Table 1: Test conditions. “EN” denotes the number of enroll-
ment speakers, “TN” denotes the number of test speech seg-
ments, “Tr-N” denotes the number of trials, and Ci denotes a
test condition with i being the number of the enrollment speech
segments (varies from 1 to 5).

Condition Female Male

Name EN TN Tr-N EN TN Tr-N

C1 394 2748 1.08M 238 1650 393K

C2 390 2748 1.07M 236 1650 389K

C3 381 2748 1.05M 231 1650 381K

C4 362 2748 995K 221 1650 365K

C5 320 2748 879K 201 1650 332K

to train gender-dependent speaker verification systems, includ-
ing GMM-UBM, total variability matrix, LDA, WCCN, NAP,
PLDA, and our CML. The number of speaker pairs for the CML
model training contains 23K true trials and 9.3M imposter tri-
als for the females, and 17.8K true trials and 5.3M imposter
trials for the males.

3.1.2. Evaluation data

We used NIST 2008 SRE data (8conv condition) for evaluation,
which include 395 female speakers and 238 male speakers. In
the enrollment stage, we selected 1 to 5 speech segments from
the first conversation of a speaker as his/her enrollment data. In
the test stage, we selected 1 speech segment from each of the
remaining 7 conversations of the speaker for test, which corre-
sponds to 7 test speech segments. We took each speaker as a
claimant with the remaining speakers acting as imposters, and
rotated through the tests of all speakers. We conducted the ex-
periments on the female and male speaker respectively. The
number of trials are summarized in Table1.

3.2. Experimental setup

We used 19 Mel frequency cepstral coefficients (MFCCs), 13
relative spectral filtered perceptual linear predictive cepstral
coefficients (RASTA-PLP) and the log energy of each frame.
Their delta and double delta coefficients are included. So, the
total dimension per frame [21] is 99 (33 × 3). The frame length
was set to 25 milliseconds, and the frame shift was set to 10
milliseconds. Feature warping with a window size of 3 seconds
was applied after the acoustic feature extraction. We employed
the MSR Identity Toolbox [22] to extract i-vectors and train
LDA/PLDA. The number of mixture components of GMM-
UBM was set to 2048. The dimension of the total variability
matrix was set to 400.

We used the LDA, WCCN or NAP model for the initial-
ization of CML. The CML with the three initialization models
are denoted as LDA+CML, WCCN+CML, and NAP+CML re-
spectively. For comparison, the initialization methods were also
evaluated by the cosine similarity scoring. The output dimen-
sion of LDA was set to 200. The corank numbers [1] of NAP
was set to 350 for the females and 100 for the males.

We also present the performance of the cosine similarity
scoring back-end without any compensation techniques, de-
noted as “NULL”, as well as the LDA+PLDA back-end for
comparison. The evaluation metrics are EER and detection er-
ror tradeoff (DET) curve.

Table 2: EER comparison between CML and its initialization
channel compensation techniques on the female speakers.

Method C1 C2 C3 C4 C5

NULL 9.73% 6.63% 5.27% 4.62% 4.12%

LDA 6.88% 5.09% 4.37% 4.05% 3.74%

LDA+CML 4.35% 3.55% 3.23% 3.13% 2.97%

WCCN 5.34% 4.27% 3.74% 3.65% 3.37%

WCCN+CML 4.74% 4.11% 3.64% 3.55% 3.28%

NAP 5.57% 4.74% 4.35% 4.20% 3.94%

NAP+CML 4.92% 4.28% 3.94% 3.87% 3.63%

LDA+PLDA 4.11% 3.76% 3.50% 3.50% 3.44%

Table 3: EER comparison between CML and its initialization
channel compensation techniques on the male speakers.

Method C1 C2 C3 C4 C5

NULL 7.72% 5.90% 5.07% 4.61% 4.63%

LDA 6.62% 5.51% 4.89% 4.49% 4.55%

LDA+CML 5.50% 4.89% 4.55% 4.25% 4.35%

WCCN 5.71% 4.92% 4.56% 4.24% 4.28%

WCCN+CML 5.50% 4.85% 4.53% 4.22% 4.27%

NAP 7.16% 5.74% 4.95% 4.54% 4.59%

NAP+CML 5.66% 4.88% 4.51% 4.21% 4.28%

LDA+PLDA 5.29% 4.90% 4.72% 4.40% 4.40%

3.3. Main results

Table 2 lists the EER results on the female speakers. From the
table, one can see that the proposed CML methods outperform
their initialization methods. Specifically, LDA+CML achieves
2.5% absolute improvement over LDA in the C1 condition, and
approximately 20% relative improvement over LDA in the C2
to C5 conditions. WCCN+CML outperforms WCCN slightly.
NAP+CML outperforms NAP slightly.

Table 3 lists the EER resulta on the male speakers. From
the table, we see that LDA+CML achieves 1.12% absolute im-
provement over LDA, and NAP+CML achieves 1.5% absolute
improvement over NAP in the C1 condition. The performance
of WCCN+CML is comparable to that of WCCN.

The performance of LDA+PLDA back-end is also pre-
sented in Tables 2 and 3 although it is not fair to compare CML
with the LDA+PLDA back-end since the former only com-
bines with an initialization method. It is seen that LDA+PLDA
achieves EERs of 4.11% to 3.44% for the female task, and
5.29% to 4.40% for the male task. Our CML obtained better
performance than LDA+PDLA in the C2 to C5 conditions. For
example, LDA+CML achieves approximately 13% relative im-
provement in the C5 condition for the female task.

Figure 2 plots the DET curves produced by LDA,
LDA+CML and NULL in the C1 condition on the female speak-
ers. From the figure, one can see that our LDA+CML yields a
significantly better DET curve than LDA.

Figure 3 plots the score distributions of LDA and
LDA+CML. One can see from this figure that LDA+CML
yields a larger between-class distance than LDA while keeping
a similar within-class variance, which results in a smaller over-
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Figure 2: DET curves produced by LDA, LDA+CML and NULL
in the C1 condition on the females.

-0.5 0 0.5 1

Cosine similarity scores

0

1

2

3

4

5

6

Sc
or

es
 p

ro
ba

bi
lit

y 
de

ns
ity

LDA (Imposter trials)
LDA (True trials)
LDA+CML (Imposter trials)
LDA+CML (True trials)

Figure 3: Score distributions of LDA and LDA+CML in the C1
condition on the females.

lap region of the decision scores between the true and imposter
trials than LDA. As a result, LDA+CML has a smaller EER.

3.4. Effect of the value of β on performance

This experiment investigates the impact of the value of the hy-
perparameter β on performance and the result for the the female
speakers in the C1 condition is plotted in Fig. 4. It is seen from
the figure that the EER of LDA+CML first decreases and then
increases with the value of β. The underlying reason can be ex-
plained as follows. When β is small, the regularization term in
(4) does not pay an important role. In this situation, CML does
not only increase the between-class distance but also increases
the within-class variance as a side effect. The negative effect of
using the cost function (2) offsets its positive effect. As a re-
sult, the verification performance is not increased. On the other
hand, if the value of β is large, CML approaches to its initial
point. Therefore, it is important to set β to a proper value to in-
crease the between-class distance while maintaining the within-
class variance relatively unchanged. While Fig. 4 was plotted
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Figure 4: Performance of LDA+CML with respect to hyperpa-
rameter β in the C1 condition on the female speakers.

for LDA+CML, we observed a similar result for WCCN+CML
and NAP+CML, which is not shown here for conciseness.

4. Summary
Motivated by the fact that improving the performance of speaker
verification can be transformed to a problem of decreasing the
overlap region of the decision scores of true and imposter tri-
als, we presented in this paper a cosine metric learning (CML)
framework for speaker verification. CML attempts to mini-
mize the overlap region by increasing the between-class dis-
tance of the two Gaussian distributions of the decision scores
with a regularization term to control the within-class vari-
ance. It can be used to improve any traditional channel or
session compensation technique, which is used as an initial-
ization of CML. Experiments on NIST SRE demonstrate that
LDA+CML, WCCN+CML, and NAP+CML outperforms, re-
spectively, LDA, WCCN, and NAP. Furthermore, LDA+CML
has achieved a competitive performance as the state-of-the-art
PLDA back-end.

Work is in progress to find better channel or session com-
pensation matrix A0, given the fact that CML is lower bounded
by the pre-defined matrix A0. We are also working to extend
CML to an end-to-end deep learning method since it is natu-
ral to propagate the gradient in (5) to a deep neural network by
back-propagation.
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