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Abstract
In this paper, we propose a unified training framework for the
generation of glottal signals in deep learning (DL)-based para-
metric speech synthesis systems. The glottal vocoding-based
speech synthesis system, especially the modeling-by-generation
(MbG) structure that we proposed recently, significantly im-
proves the naturalness of synthesized speech by faithfully rep-
resenting the noise component of the glottal excitation with an
additional DL structure. Because the MbG method introduces a
multistage processing pipeline, however, its training process is
complicated and inefficient. To alleviate this problem, we pro-
pose a unified training approach that directly generates speech
parameters by merging all the required models, such as acous-
tic, glottal, and noise models, into a single unified network.
Considering the fact that noise analysis should be performed af-
ter training the glottal model, we also propose a stochastic noise
analysis method that enables noise modeling to be included in
the unified training process by iteratively analyzing the noise
component in every epoch. Both objective and subjective test
results verify the superiority of the proposed algorithm com-
pared to conventional methods.
Index Terms: Text-to-speech, speech synthesis, glottal
vocoder, modeling-by-generation structure

1. Introduction
With recent developments in deep learning (DL) techniques,
glottal vocoder-based speech synthesis systems have signifi-
cantly improved the quality of synthesized speech [1–3]. In a
glottal vocoder, a pitch-dependent excitation signal is first ob-
tained by applying a linear prediction (LP) inverse filter to an
input speech signal [4,5], and then the temporal sequence of the
excitation signal is trained and generated via DL techniques.
The synthetic speech quality of a glottal excitation model is
better than that of conventional band-aperiodicity (BAP)-based
approaches [6]; however, its synthesized speech is often unnat-
urally buzzy because of overly smoothed glottal outputs.

To address the aforementioned problem, we proposed the
modeling-by-generation (MbG)-structured glottal vocoder that
directly models the missing high-frequency component in the
generated glottal signal [7]. Using the fact that the difference
between the reference and generated glottal signals is regarded
as a non-harmonic or noise component, the weighted difference
values are used as output noise features (NFs) for an additional
noise model (NM). The glottal excitation in the synthesis stage
is constructed by adding the generated outputs of the glottal
model (GM) and the NM. As a result, the perceptual quality
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of the synthesized speech became much more natural than con-
ventional approaches. However, its training process is highly
complicated since the MbG-structured glottal vocoder approach
uses a multistage architecture that needs to train three indepen-
dent models, such as acoustic model (AM), the GM, and the
NM. Moreover, its training process is redundant because simi-
lar input features are repeatedly used in each training network.

To alleviate these problems, this paper proposes a unified
framework called a unified model (UM) for the MbG-structured
glottal vocoding speech synthesis system. The inputs of the UM
are the linguistic features (LFs), and the outputs are a concate-
nation of acoustic features (AFs), glottal features (GFs), and
the NFs. The weights of the UM are optimized to minimize the
error between the reference and generated outputs.

Because NF modeling requires an already-trained GM, it
cannot be intuitively included in the UM training framework.
To include NF modeling in the UM training process, we also
propose a stochastic noise analysis method so the GFs and cor-
responding NFs are concurrently trained and generated in a sin-
gle UM. At the beginning of the UM training process, the input
NFs are filled with a random vector and the network weights are
optimized once. After this optimization process, the new NFs
are extracted from the “roughly” generated GFs, and used to
update the entry of NFs. By repeating this update and optimiza-
tion process, the GFs and corresponding NFs can be effectively
trained in a single unified training network.

As all the output features are generated in a single UM, the
proposed method builds a simple but effective glottal vocoding-
based speech synthesis system. The objective and subjective
test results also confirm that the proposed unified framework
provides a much faster synthesis speed with highly qualified
synthesized speech than the conventional MbG-structured ap-
proach.

2. MbG-structured glottal vocoding system
Figure 1 describes the block diagram of the conventional MbG-
structured glottal vocoding speech synthesis system. It consists
of the AM, GM, and NM, which is used to generate AFs, GFs,
and NFs, respectively.

The output AFs consist of vocal tract line spectral frequen-
cies (LSF–VT), a voicing flag (VUV), a logarithm energy (Erg),
vocal source LSFs (LSF–VS), and a logarithm fundamental fre-
quency (logF0). To extract the LSF-VT, the glottal inverse fil-
tering (GIF) method is applied to the input speech first [4, 5],
and then a glottal closure instant (GCI) detection algorithm is
used to estimate the GCI, logF0, and VUV [8]. To extract the
GFs, the two-pitch-period glottal signals that have GCIs at the
middle and both ends are shaped by a cosine window, and they
are normalized to have unity energy. Before training the GM,
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Figure 1: Block diagram of the conventional MbG-structured
glottal vocoding speech synthesis system. Each model

constructs the mapping function from linguistic features (LFs)
to acoustic features (AFs), glottal features (GFs), and noise

features (NFs), respectively. The hat symbol implies the
features estimated via DL model.

both ends of the GF are zero-padded to have a fixed dimension.
In the NM, the output vector consists of NF vectors parame-
terized from the missing noise components in the GM outputs.
To extract NFs, the noise component is first obtained through
a weighted subtraction of the reference glottal pulse extracted
from the recorded speech and the smoothed glottal pulse gener-
ated from the trained GM [7]. The shape and energy ratio of the
noise component is then represented via the LSF (LSF–N) and
a harmonic-to-noise ratio (HNR), respectively.

In the synthesis stage, the GM and NM predict their output
features to reconstruct the glottal excitation signals. To com-
pensate for the missing noise component, a sequence of random
noise is first generated; then, its spectral shape and gain are
refined by the generated LSF–N and HNR, respectively. By
adding them to the generated glottal pulse and adjusting the
spectral tilt, the two-pitch-period glottal pulses are obtained.
Finally, the glottal excitation signal is reconstructed by apply-
ing a pitch-synchronous overlap-add (PSOLA) method; a single
frame of speech signal is synthesized by filtering the glottal ex-
citation signal through the vocal tract filter reconstructed by the
generated LSF–VT coefficients.

3. Stochastic noise analysis method based
unified model training

Employing the MbG structure in the glottal vocoding system
provides significantly better quality than the conventional noise
compensation algorithms. However, its training and generat-

Figure 2: Training of unified model with a stochastic noise
analysis method. The reference NFs in current epoch (NFsi)
are obtained by generated GFs in previous epoch (ĜFsi´1).
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Figure 3: NMSE curve of the vocoder features

ing processes are complicated due to the multistage processing
pipeline. To construct a simpler and more efficient network, we
propose a stochastic noise analysis-based UM training method
that is able to capture all the vocoding parameters compactly
within a unified network.

Figure 2 describes the training process of the proposed al-
gorithm. In this framework, the LFs are used as inputs, and the
concatenations of the AFs, GFs, and NFs are used as the corre-
sponding outputs. Similar to conventional training methods, the
pairs of input and output features are used to train the weights
of the neural network, but there is a difference in controlling the
entry of NFs into the output layer.

Because it is impossible to obtain reference NFs directly at
the beginning of the training process, the random sequence fills
the entry for NFs, and the weights are optimized once. After this
optimization process, the new NFs are extracted from roughly
generated GFs, and the NFs’ entry is updated by the new ones.
The UM in this training step has a better capability of describ-
ing GFs than that of UM in the previous training step; thus, the
newly extracted NFs more clearly describe the smoothing im-
pact on GF modeling. Consequently, by iteratively updating the
entry of NFs with newly extracted ones in every training step,
the UM naturally improves the modeling capabilities of GFs
and corresponding NFs in a single unified training network.

Figure 3 represents the normalized mean square errors
(NMSEs) in the total error, as well as the AFs, GFs, and
NFs that are calculated during the UM training process. The
smoothly converged AF, GF, and NF curves verify that the pro-
posed stochastic noise analysis successfully converges to the
optimal point without any unstable conditions.
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Table 1. Network architectures. All of the networks have FF networks at the input side and an LSTM network at the output side. The
merged cell implies the model unification. The subscripts ’a’, ’g’, ’n’, and ’{’ imply the AM, GM, NM, and their separabilities,

respectively. For instance, the system MbGa{gn consists of a separated AM and a unified GM & NM.

system Type of layers
Layer architectures

(units ˆ layers) Model size (M)
AM GM NM

MFa{g
FF

LSTM
1,024ˆ2
512ˆ1

512ˆ2
256ˆ1 – 5.48

MFag
FF

LSTM
1,024ˆ3
512ˆ1 – 5.47

MbGa{g{n
FF

LSTM
1,024ˆ2
512ˆ1

512ˆ2
256ˆ1

256ˆ2
128ˆ1 5.77

MbGa{gn
FF

LSTM
1,024ˆ2
512ˆ1

512ˆ3
256ˆ1 5.72

MbGagn
FF

LSTM
1,024ˆ3
512ˆ1 5.47

Table 2. Speech features and their dimensions including ∆ and
∆∆ values for acoustic, glottal and noise features.

Feature Component dim. ∆ dim.

AFs

LSF–VT 30 90
VUV 1 1
Erg 1 3

LSF–VS 10 30
logF0 1 3

GFs Glottal pulse 400 400

NFs LSF–N 15 15
HNR 1 1

4. Experiments
4.1. Experimental Setup

For all the experiments in this paper, we used a phonetically
and prosodically balanced speech corpus recorded by a Korean
male professional speaker. The speech signals were sampled at
16 kHz, and each sample was quantized by 16 bits. In total,
2,500 utterances (about 3 hours) were used for training, 200
utterances were used for validation, and another 200 utterances
included in neither the training nor the validation steps were
used for testing.

In the analysis step, the vocoding parameters were extracted
every 5-ms with a 20-ms frame length. Table 2 describes all the
vocoder features used in this experiment. At the beginning of
AF extraction, the logF0, VUV, and GCI were estimated us-
ing the SEDREAM algorithm [8]. Then, the quasi-closed phase
GIF method was applied to estimate the 30-dimensional LSF–
VT and the pitch-dependent glottal excitation signal [4, 5]. Ad-
ditionally, a 10-dimensional LSF–VS was obtained by applying
an LP analysis of the glottal pulse. The 400-dimensional time
sequence of the glottal signal was used as the GF; meanwhile,
the 15-dimensional noise LSFs and a 1-dimensional pulse-wise
HNR were extracted for the NFs.

In the training step, the input LF vectors included 210-
dimensional contextual information were used. The LF vec-
tors consist of 203-dimensional binary features (e.g. identity of
quinphone), 6 numerical features (e.g. the number and position
of phonemes, syllables, and words), and one additional numer-
ical feature for duration of current segment. The corresponding
output AF feature vectors contained 127-dimensional acous-

tic parameters, including their time dynamics [9], whereas the
GF and NF vectors contained 400- and 16-dimensional static
parameters, respectively. Before training, both the input and
output features were normalized to have zero-mean and unit-
variance. The hidden layers consisted of multiple feedforward
(FF) and long short-term memory (LSTM) layers, which were
connected to the input layer and the output layer, respectively.
Table 1 summarizes the number of layers, the number of units,
and the corresponding model size among the different architec-
tures of neural networks.

The conventional glottal vocoding system with a median
filter (MF)-based noise compensation algorithm was also in-
cluded as a baseline system [10]. In this system, the noise
component is defined by the residual signal of the MF out-
put, then parameterized into 15-dimensional noise LSFs and 1-
dimensional energy terms to compose the NF vectors. In addi-
tion to 127-dimensional AF vectors, total 143-dimensional out-
put features were trained via the AM. The rectified linear unit
(reLu) and linear activation functions were used on the hidden
and output layers, respectively. The weights were first initial-
ized using a Xavier initializer [11], and then trained using a
back-propagation through time procedure with an Adam opti-
mizer [12, 13]. The training and test procedures were imple-
mented using the TensorFlow framework [14].

In the synthesis step, the mean vectors of all the output
features were predicted by the trained models. With the pre-
computed global variances of output features from all the train-
ing data [15], a speech parameter generation algorithm was ap-
plied to generate a smooth trajectory of the AFs [16]. To syn-
thesize the glottal excitation signal, the two-pitch-period glottal
pulses were first synthesized by the generated GF and logF0,
and then the noise and spectral tilt compensation modules were
applied to the glottal pulse. By constructing the glottal exci-
tation signal pitch-synchronously, a speech signal was synthe-
sized with the generated LSF–VT and glottal excitation signals.
To enhance spectral clarity, LSF-sharpening and formant en-
hancement filters were also applied to the generated spectral
parameters [17, 18].

4.2. Objective and subjective evaluation results

In the objective test, distortions in speech parameters obtained
from the original speech and estimated from various DL mod-
els were evaluated. The metrics for measuring distortion were
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Table 3. Objective evaluation results for the various speech synthesis systems

System LSD–VT F0 RMSE VUV error LSD–GP LSD–N Generation time Relative speed
(model size; M) (dB) (Hz) (%) (dB) (dB) (ms)

MFa{g (5.48) 3.82 13.89 6.04 6.43 3.10 68.28 1.51
MFag (5.47) 3.80 13.66 6.16 6.40 3.10 45.31 1.00

MbGa{g{n (5.77) 3.82 14.38 6.19 6.45 3.09 87.86 1.93
MbGa{gn (5.72) 3.81 14.74 6.22 6.38 3.11 67.71 1.49
MbGagn (5.47) 3.81 13.81 6.24 6.40 3.10 45.44 1.00

Table 4. Subjective preference test results (%) between various speech synthesis systems. The systems that achieved significantly better
preference at the p ă 0.01 level are in bold typeface.

Test index MFa{g MFag MbGa{g{n MbGa{gn MbGagn Neutral p-value
Test 1 43.3 28.7 – – – 28.0 0.03
Test 2 18.0 – – – 58.0 24.0 ă 10´8

Test 3 – 18.7 – – 60.0 21.3 ă 10´8

Test 4 – – 36.7 30.7 – 32.7 0.37
Test 5 – – 40.7 – 32.0 27.3 0.21
Test 6 – – – 28.0 38.7 33.3 0.11

the log-spectral distance of the spectral parameters from the vo-
cal tract, glottal pulse, and noise component (LSD–VT, LSD–
GP, and LSD–N, respectively) in dB, the root mean square error
(RMSE) for F0 in Hz, and the error rate of voicing flag (VUV
error) in %. To evaluate the synthesis efficiency, we also mea-
sured the generation time (s) for evaluating all the output pa-
rameters’ synthesis speeds in the test sets.

The objective results are summarized in Table 3. The find-
ings verify the advantages of the proposed unified framework
(MFag and MbGagn) as follows: (1) It achieved a perfor-
mance equivalent to the separated training cases (MFa{g and
MbGa{g{n). This means that if the network is “well” optimized,
then the accuracy of feature estimation does not critically de-
pend on the types of output features. (2) The stochastic noise
analysis methods (MbGa{gn and MbGagn) were as effective
as the conventional MbG-structured method (MbGa{g{n), even
though they did not have fixed-reference NFs during the training
process. They show an LSD-N performance similar to the sepa-
rated case, just allowing for a difference lower than 0.02 dB. (3)
The unified framework significantly reduced generation time,
despite having a similar number of parameters. Firstly, the uni-
fication of AM and GM (MFag) showed a synthesis speed 1.5
times faster than the separated one (MFa{g). Secondly, the unifi-
cation of GM and NM (MbGa{gn) showed a synthesis speed 1.3
times faster than the separated one (MbGa{g{n). Consequently,
the UM merging the AM, GM, and NM (MbGagn) showed a
synthesis speed about two times faster than the separated train-
ing case (MbGa{g{n).

To evaluate the perceptual quality of the proposed system,
an A-B preference test and the mean opinion score (MOS) lis-
tening test were performed. In the preference test, 10 native
Korean listeners were asked to rate the randomly selected 15
synthesized utterances from the test set by quality preference.
The preference results shown in Table 4 verify that the percep-
tual quality of the unified framework is indistinguishable from
that of the separated training cases (Test 1, 4, 5, and 6). Be-
cause the estimated noise component is quite different between
the MF and MbG approaches, the listeners preferred the pro-
posed MbG approach to the conventional MF approach (Test 2
and 3).

The setup for the MOS test was the same as that for the pref-

Table 5. Subjective MOS test results with a 95% confidence
interval for various speech synthesis systems.

STRAIGHT MbGa{g{n MbGa{gn MbGagn

2.91 ˘ 0.13 3.79 ˘ 0.21 3.71 ˘ 0.18 3.68 ˘ 0.17

erence test, except listeners were asked to make quality judg-
ments about the synthesized speech using the following pos-
sible responses: 1 = Bad, 2 = Poor, 3 = Fair, 4 = Good, and
5 = Excellent. In addition to the glottal vocoding system, the
STRAIGHT-based speech synthesis system was also included
as a baseline system [6]. For fair comparison, the 3 FF lay-
ers with 1,024 units and a single LSTM layer with 512 mem-
ory cells having a model size of 5.27 M was used as AM for
the modeling of STRAIGHT features. Table 5 shows the MOS
test results, which confirm that the unified framework achieved
a performance similar to that of the separated models, and it
provided a much better perceptual quality than the baseline
STRAIGHT system.

5. Conclusion
In this paper, we introduced a unified training framework for
a glottal vocoding system with a stochastic noise analysis
method. By including the modeling of a smoothing impact
on the glottal signal in every optimization step, the proposed
system successfully simplified the training and generation pro-
cesses. The experimental results verified that the proposed
framework showed an equivalent modeling accuracy and per-
ceptual quality to conventional systems; whereas the generation
speed was two times faster. Consequently, the proposed frame-
work successfully constructed a simple and compact speech
synthesis system by removing the unnecessarily redundant mul-
tistage processing pipelines.
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