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Abstract
Knowledge distillation, or teacher-student training, has been ef-
fectively used to improve the performance of a relatively sim-
pler deep learning model (the student) using a more complex
model (the teacher). It is usually done by minimizing the
Kullback-Leibler divergence (KLD) between the output distri-
butions of the student and the teacher at each frame. However,
the gain from frame-level knowledge distillation is limited for
sequence models such as Connectionist Temporal Classification
(CTC), due to the mismatch between the sequence-level crite-
rion used in teacher model training and the frame-level criterion
used in distillation. In this paper, sequence-level knowledge dis-
tillation is proposed to achieve better distillation performance.
Instead of calculating a teacher posterior distribution given the
feature vector of the current frame, sequence training criterion is
employed to calculate the posterior distribution given the whole
utterance and the teacher model. Experiments are conducted
on both English Switchboard corpus and a large Chinese cor-
pus. The proposed approach achieves significant and consistent
improvements over the traditional frame-level knowledge dis-
tillation using both labeled and unlabeled data.
Index Terms: Knowledge Distillation, Connectionist Temporal
Classification, Kullback-Leibler Divergence.

1. Introduction
Although deep neural networks (DNNs) have achieved state-of-
the-art performance in automatic speech recognition (ASR) [1],
the large amount of parameters take up considerable memory
for storage. The complex models also require much time and
power to evaluate [2]. These factors impede the deployment
of such models on resource limited systems. Thus researches
have been conducted on transferring the learned models to low-
resource platforms [3, 4, 5, 6].

Transfer learning (knowledge distillation) [7], or teacher-
student (TS) training [2], is a machine learning paradigm that
shows potential in model compression. Namely, it utilizes
knowledge learned by teacher models to help the student model
converge faster or with better predictions [8]. In this way, the
knowledge in a conventionally trained DNN can be distilled
into a narrower and shallower model with fewer parameters and
comparable system performance. In [2], teacher models pre-
dict the soft targets as the supervision of much smaller student
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model. Teacher models can be larger sizes, different structures
or trained by different criteria including cross entropy (CE) and
sequence discriminative training. In [9], the knowledge distilla-
tion can be combined with newly proposed parameter-efficient
neural network structures.

All these methods operate at frame level. Namely, Kull-
backLeibler divergence (KLD) between posterior outputs of the
student model and teacher models at each frame is minimized.
The disadvantages include: i) separately optimizing at frame
level while ASR is inherently a sequence labeling problem. ii)
treating un-transcribed and transcribed data equally and not uti-
lizing transcription of the latter. Moreover, researches haven’t
been conducted carefully in the context of end-to-end sequence
model such as connectionist temporal classification (CTC).

In this work, knowledge distillation for CTC is investigated
for the first time. Sequence-level knowledge distillation is pro-
posed. Namely, the posterior probability of the student model
is still optimized at sequence level. Nevertheless, the posterior
probability of the label sequence given the feature sequence is
obtained from the teacher model using CTC criterion, which
can be extended to sequence discriminative training criteria.
Experiments are conducted on both Switchboard corpus and
a larger Chinese corpus. The proposed method achieves con-
sistent improvement versus traditional frame-level knowledge
distillation. In Section 2.2, knowledge distillation and its appli-
cation in ASR are briefly reviewed. Sequence-level knowledge
distillation is proposed in Section 2.3 and compared with prior
works in Section 3. In Section 4, experiments are conducted.
Finally we present our conclusions in Section 5.

2. Knowledge distillation for CTC
In this section, both traditional frame-level knowledge distilla-
tion and sequence-level knowledge distillation are introduced to
CTC 1.

2.1. Connectionist temporal classification

The CTC criterion [10] was introduced to map the input speech
frames into an output label sequence. To handle the issue that
the length of output labels is smaller than that of input frames,
CTC allows the repetition of labels and introduces a blank label
(denoted as φ) to map the label sequence into a CTC path, which
makes the input and output sequence having the same length T .

Denote the phoneme label sequence as l, the corresponding
input frame sequence as x, and B−1(l) represents all the CTC
paths mapped from l. The CTC objective function LCTC is de-
fined as the negative log conditional probability of the ground

1Our recent work shows that the proposed approach can be extended
to other sequence discriminative training criteria.
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truth labels of all training sequences (using one sequence as an
example)

LCTC = − ln(P (l|x)) (1)

The gradient of (1) with respect to (w.r.t.) the output at each
frame can be calculated as

∂LCTC

∂ytk
= − 1

P (l|x)
∂P (l|x)
∂ytk

(2)

where ytk denotes the softmax output of k-th phoneme at frame
t. The probability of label sequence l can be calculated by sum-
ming over the probabilities of all possible paths:

P (l|x) =
∑

π

P (π|x) =
∑

π

T∏

t=1

ytπt (3)

where π = (π1, . . . , πT ) ∈ B−1(l), and we assume that labels
at each time step are conditionally independent. The required
gradient w.r.t the softmax activation atk is

∂LCTC

∂atk
=

∑

k′

∂LCTC

∂ytk′

∂ytk′

∂atk
= ytk −

∑
πt=k

P (π|x)
P (l|x) (4)

Denote σCTC(k, t) as
∑
πt=k

P (π|x)
P (l|x) , which is the posterior prob-

ability of the k-th phoneme at frame t, and can be efficiently
calculated using the forward-backward algorithm [10].

2.2. Frame-level knowledge distillation

To train the student model, the Kullback-Leibler divergence
(KLD) between the frame posterior distributions of the teacher
and student models is minimized as below:

KLD(p, q) =
∑

i

pi log
pi
qi

=
∑

i

pi log pi −
∑

i

pi log qi
(5)

where p and q are the teacher and student distributions respec-
tively. Because the first term in Equation (5) is not related to
the student model optimization, only the second term (cross en-
tropy) is used. Comparing Equation (5) with CE criterion, the
hard label is replaced by the posterior distribution inferred from
the teacher model using source data at each frame. In ASR,
the optimization of knowledge distillation is conducted on the
frame level KLD in each sequence (using one training sequence
as an example):

LKLD =
T∑

t=1

∑

k

htk log y
t
k (6)

where htk and ytk are the k-th phoneme’s posterior probability
of teacher and student models at frame t respectively.

Researches have been conducted on different types of
teacher and student models. In [2], teacher models can be larger
sizes, different structures or trained by different criteria includ-
ing cross entropy and sequence discriminative training. In [9],
the knowledge distillation can be combined with newly pro-
posed parameter-efficient neural network structures. In [11], the
KLD optimization can be combined with permutation invari-
ant training in multi-outputs single channel overlapped speech
recognition.

The frame-level knowledge distillation discussed above can
be extended to CTC (F-CTC) as below,

∂LF-CTC

∂atk
= ytk − htk (7)

ytk and htk are the k-th phoneme outputs at frame t of student
and teacher models respectively.

The training procedure is similar to [2]: i) Train a large-
size CTC teacher model with the standard procedure. ii) For
each mini-batch, do forward propagation of both teacher and
student models to obtain ytk and htk. iii) Calculate the error sig-
nal as Equation (7) and do back-propagation only for the student
model. iv) Repeat step ii to iv until convergence.

Disadvantages of the current framework are summarized:

• Frame level optimization. ASR is inherently a se-
quence labeling problem. Sequence level criteria, CTC
and sequence discriminative training, are proposed and
achieved significant and consistent improvement [12].
Nevertheless, the traditional knowledge distillation op-
erates at frame level, although teacher models can be se-
quence discriminative trained [2].

• Missing transcription. The traditional knowledge
distillation treats un-transcribed and transcribed data
equally as the input of both teacher and student mod-
els. Although large amount of un-transcribed data can
be helpful [13], discarding transcription can hamper the
performance and requires additional steps to utilize the
transcription during [14] or after knowledge distilla-
tion [9, 11].

2.3. Sequence-level knowledge distillation

In traditional deep learning models trained by the cross en-
tropy criterion, the quality of the supervision is always crucial
to the performance [1]. Several works comparing traditional
systems with CTC based systems also show that the quality of
σCTC(k, t) is the bottleneck of the convergence speed and per-
formance [15].

Frame-level knowledge distillation allows transfer of these
frame distributions directly from the softmax output of teacher
model. Ideally however, we would like to fully utilize the se-
quence training criterion. From Equation (3) (4), we know that

∂LCTC

∂atk
= ytk − σCTC(k, t) (8)

where σCTC(k, t) is the posterior probability of the k-th phoneme
at frame t. Since

∑
k σCTC(k, t) = 1 and σCTC(k, t) >= 0, we

can treat σCTC(k, t) as the soft label used in traditional teacher
student training. According to the derivative in Equation (4),
the loss function can be equally written as below:

LCTC = −
T∑

t=1

∑

k

σCTC(k, t) log y
t
k (9)

To distill the knowledge, we do the forward-backward calcu-
lation on teacher model to obtain σCTC(k, t), which can be ex-
tended to other sequence discriminative training criteria. There-
fore, the sequence-level knowledge distillation training objec-
tive function LS-CTC can be derived as below:

∂LS-CTC

∂atk
= ytk − σ′CTC(k, t) (10)
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where σ′CTC(k, t) is calculated on teacher model. Equation 10
is similar to Equation 7 for both of them calculate frame-wise
KLD. Essentially, we compute the conditional probability by
marginalizing all possible alignments and, at each frame t, force
the student model to focus on the correct labels, which thor-
oughly utilizes the label sequence.

The training procedure is summarized: i) Train a large-size
CTC teacher model with the standard procedure. ii) For each
mini-batch, do forward propagation of both teacher and student
models to obtain ytk and σ′CTC(k, t). iii) Do forward-backward
calculation on each sequence at the teacher model and obtain
σ′CTC(k, t) as Equation (4). iv) Calculate the error signal as
Equation (10) and do back-propagation for the student model.
v) Repeat step ii to iv until convergence.

Compared with frame-level knowledge distillation, as
shown in Figure 1, the key difference is that the transcription is
utilized. In Equation (7), the student model is optimized to im-
itate the frame posterior output of the teacher model, no matter
whether it is correct or wrong compared with the transcription.
Nevertheless, S-CTC forces the student model to only learn a
correct phoneme alignment through the state occupation proba-
bility obtained from forward-backward calculation on the tran-
scription using the teacher model.

For data without transcriptions, we can first utilize it using
frame-level knowledge distillation, then fine-tune the student
model using sequence-level knowledge distillation with labeled
data. Details of this effect will be discussed in Section 4.3.
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Figure 1: Frame and sequence level knowledge distillation.

3. Relation to prior work
In this work, knowledge distillation based model compres-
sion [8] for CTC is investigated for the first time. The student
model is still trained by CE criterion, but the supervision, the
frame posterior probability, is obtained from the teacher model
using sequence training criterion.

A key difference versus the traditional frame-level knowl-
edge distillation is that the proposed knowledge distillation is
conducted on sequence level. [2, 9] propose to transfer the
sequence discriminative trained teacher model by KLD based
frame-level training. Sequence discriminative training can be
conducted after transfer learning, which obtains further im-
provement [11]. We believe it is the evidence of the importance
of sequence training. Another difference is that the transcription
is utilized, which is different with hypothesis sequence-level
knowledge distillation in [16]. The proposed method forces
the student model to only learn a correct phoneme alignment
through the state occupation probability obtained from doing
forward-backward calculation on the transcription at the teacher
model.

The closest related work is the sequence student-teacher
training proposed for DNN-HMM in [17], where the student
model is trained to emulate the hypothesis posterior distribu-
tion of the teacher model. The differences include: i) different
models and criterion. [17] introduces sequence-level knowl-
edge distillation to DNN-HMM trained by sequence discrimi-
native criteria, while this work is based on LSTM trained by
CTC. ii) hypothesis modeling. [17] constrains teacher hypothe-
ses by n-best list from beam search, which can hinder the im-
provement. Nevertheless, this work computes the conditional
probability by marginalizing over all possible alignments of the
transcription and shows that sequence-level knowledge distilla-
tion can be combined with unsupervised frame-level knowledge
distillation, which brings further improvement.

4. Experiments
Experiments were performed on both Switchboard corpus and
a large Chinese corpus. The CTC teacher model is a 5-layer
LSTM, each with 1024 memory cells and a recurrent projection
layer of 256 units. For the student model, we used 3 LSTM lay-
ers of 400 cells, each with a recurrent projection layer of 128
units. For comparison purpose, a baseline hybrid system was
trained by CE criterion and with the same structure as teacher
model except the last layer, which is tri-phone states with 8K
clusters. The CTC model was initialized by the baseline hy-
brid system above [18]. The weights in all the networks were
randomly initialized with a uniform (-0.02, 0.02) distribution.
We clipped gradients to [-5, 5]. A learning rate annealing and
early stopping strategies as in [19] were used. All LSTM RNN
models were trained using KALDI [20] and EESEN [21].

4.1. Experiments on Switchboard corpus

Switchboard [22] is a 310-hour English dataset with 4870 chan-
nels. 36-dimensional log-mel filterbank over 25 ms frames ev-
ery 10 ms from the input speech signal was extracted. 45 mono-
phones and a blank were predicted by the output layer of the
neural network. Evaluation was carried out on the Switchboard
(swbd) and Callhome (callhm) subset of the NIST 2000 CTS
test set. The waveforms were segmented according to the NIST
partitioned evaluation map (PEM) file. A 30k-vocabulary lan-
guage model trained from transcription of the Switchboard cor-
pus and interpolated with the Fisher corpus was used for decod-
ing. Word error rate (WER) was taken as the metric.

Table 1 shows the performance comparison on Switch-
board. Line 1 and 2 are the baseline systems of the teacher and
student model respectively. With 10 times more parameters, the
teacher model obtains 20% reduction in WER versus that of
the student model, which is similar to the observation in [23].

3705



Table 1: Performance comparison of CTC based knowledge dis-
tillation on Switchboard corpus.

Model Criterion WER (%)
swbd callhm

Teacher CTC 15.9 29.6
Student 20.0 34.3

Student F-CTC 17.8 32.6
S-CTC 17.4 31.5

In our preliminary experiments, after the knowledge distillation
procedure described in Section 2.2 and 2.3, utilizing CTC cri-
terion to fine-tune the model always brings about further slight
improvement, which is the same to the observation in sequence
discriminative training [9, 11]. Thus all numbers shown in the
table are obtained after CTC fine-tuning. Compared with the
student model, F-CTC can obtain 11% and 5% WER reduction
in swbd and callhm, respectively. S-CTC further shows slight
but consistent reduction versus F-CTC.

4.2. Experiments on Chinese corpus

CTC always need more data to achieve competitive perfor-
mance versus hybrid systems [18, 24]. We used a 2000 hours
hand-transcribed Chinese corpus to evaluate the proposed CTC
based knowledge distillation paradigm. All the utterances were
extracted from an online speech recognition service. Our train-
ing set consists of 2.5 million utterances with average dura-
tion of 3 seconds. The input of the LSTM RNNs was 40-
dimensional log-mel filterbank energy features computed every
10ms using the Chinese corpus. The input layer frame skip-
ping [25] was adopted to reduce computation. A stochastic data
sweeping scheme [26] was used to accelerate the training pro-
cedure. 121 mono-phones and a blank were predicted by the
output layer. A 3-gram language model was applied in evalua-
tion. The evaluation set were also extracted from the online ser-
vice without speaker duplication. The test set consists of 6500
utterances.

Table 2: Performance comparison of CTC based knowledge dis-
tillation on Chinese corpus.

Model Method CER (%)
Teacher CTC 15.7
Student 20.5

Student F-CTC 19.7
S-CTC 18.9

Table 2 shows performance comparison on the large Chi-
nese corpus. The observations from first two lines are consistent
with that of Table 1. Comparing line 3 and 4 with the student
baseline system in line 2, both knowledge distillation methods
can significantly reduce the WER and S-CTC shows slight but
consistent improvement versus F-CTC. All results shown in the
table are obtained with CTC fine-tuning.

4.3. Experiments on unlabeled data

As discussed in Section 2.2, frame-level knowledge distillation
can work in an unsupervised manner. Hence large amount of
unlabeled data can be used to make the student model more sim-
ilar to the teacher [13]. Another 2000 hours data extracted from

the same source described in Section 4.2 is used. We utilize all
data to do the frame-level knowledge distillation in an unsuper-
vised manner, which obtains 3.5% WER reduction in line 2 of
Table 3. After that, we continue the S-CTC procedure in line 3,
which brings another 2.1% improvement. Both improvements
are statistically significant.

Table 3: Knowledge distillation utilizing both labeled and unla-
beled data.

Model Method CER (%)

Student
F-CTC 19.7

+ unlabeled data 19.0
+ S-CTC 18.6

4.4. Analysis

We selected an utterance from Switchboard corpus and forward
propagated it on the teacher model described in Section 4.1.
Figure 2 shows the frame-level phoneme probabilities emitted
by the teacher CTC model (different color for each phoneme,
dotted black line for blank), along with the sequence-level
phoneme posterior from forward-backward calculation using
the teacher outputs. As we can see, the sequence-level posterior
is more sharp and evident at phoneme ’v’, ’ih’ and ’ah’, and it
can always focus on the right labels at each frame, hence gives
student model more correct knowledge. Note that the frame-
level posterior assigns high probability to wrong labels when
the truth label is ’ay’. On the whole, a better method to distill
the knowledge is the proposed S-CTC as shown in the result.

nsn hh ay dhih s ih z dey v ih d fr ah m f low r ih dax

Frame-Level Knowledge Distillation Posterior0

1
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nsn hh ay dhih s ih z dey v ih d fr ah m f low r ih dax

Sequence-Level Knowledge Distillation Posterior0

1
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y

Figure 2: Posterior comparison.

5. Conclusions
In this work, knowledge distillation for Connectionist Temporal
Classification (CTC) is investigated for the first time. More-
over, the sequence-level knowledge distillation is proposed.
Namely, the posterior probability of the student model is still
optimized at sequence level. Nevertheless, the posterior prob-
ability of the label sequence given the feature sequence is ob-
tained from the teacher model. Experiments are conducted on
both Switchboard corpus and a larger Chinese corpus. The
proposed method achieves significant and consistent improve-
ment versus the student model and the traditional frame-level
knowledge distillation. The proposed method benefits from uti-
lizing the transcription and can be extended to other sequence
discriminative training criteria. Future works include extend-
ing the sequence-level knowledge distillation to several newly-
proposed sequence criteria, e.g. RNN transducer [27], recurrent
neural aligner (RNA) [28], neural segmental model [29] and at-
tention based encoder-decoder [30].
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