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Abstract

India being a multilingual society, a multilingual automatic
speech recognition system (ASR) is widely appreciated. De-
spite different orthographies, Indian languages share same pho-
netic space. To exploit this property, a joint acoustic model
has been trained for developing multilingual ASR system us-
ing a common phone-set. Three Indian languages namely Tel-
ugu, Tamil and, Gujarati are considered for the study. This
work studies the amenability of two different acoustic model-
ing approaches for training a joint acoustic model using com-
mon phone-set. Sub-space Gaussian mixture models (SGMM),
and recurrent neural networks (RNN) trained with connectionst
temporal classification (CTC) objective function are explored
for training joint acoustic models. From the experimental re-
sults, it can be observed that the joint acoustic models trained
with RNN-CTC have performed better than SGMM system
even on 120 hours of data (approx 40 hrs per language). The
joint acoustic model trained with RNN-CTC has performed bet-
ter than monolingual models, due to an efficient data sharing
across the languages. Conditioning the joint model with lan-
guage identity had a minimal advantage. Sub-sampling the fea-
tures by a factor of 2 while training RNN-CTC models has re-
duced the training times and has performed better.

Index Terms: Speech recognition, Joint acoustic model, low-
resource, common phone set, Indian languages, RNN-CTC,
SGMM

1. Introduction

Though multilingual automatic speech recognition (ASR) sys-
tems are widely appreciated in India. Minimal attempts have
been made due to the scarcity of resources required for develop-
ing state-of-the-art large vocabulary continuous speech recogni-
tion (LVCSR) systems [1, 2, 3, 4, 5]. Resources required for de-
veloping an ASR system can be broadly grouped to two aspects
i.e., transcribed data and pronunciation models. As Indian lan-
guages are syllabic in nature, the pronunciation models could be
generated from a simple rule-based parser [6, 7, 8, 9]. Low re-
source in an Indian scenario majorly reflects lack of transcribed
data. Indian languages have certain advantageous properties
such as sharing same phonetic space and differing in phono-
tactics [6]. Indian languages differ in prosody i.e., duration, in-
tonation, and prominence associated with a syllable [6]. These
properties could be beneficial for developing multi-lingual ASR
systems, but the selection of an appropriate phone-set and the
suitable acoustic modeling approach are crucial for achieving
better performances. Thus in this study, we explore two differ-
ent acoustic modeling approaches for training a joint acoustic

model for Indian languages.

Traditional speech recognition systems use hidden Markov
model-Gaussian mixture models (HMM-GMM) as acoustic
models. In a HMM-GMM acoustic model, HMMs model
the tri-phones and the states of these tri-phones (senones) are
modeled using GMMs [10]. Despite the advantageous prop-
erties of GMMs such as faster convergence and capability to
model any probability distribution, GMMs fail to model data
on non-linear manifold [10]. Though hybrid acoustic models
i.e., HMM-Deep neural network (HMM-DNN) have performed
better than HMM-GMM systems, the frame level senone la-
bels required for training DNNs have to be obtained from an
HMM-GMM system [11]. The hybrid systems suffer from a
downside that the objective function which is optimized while
training is much different from the true error measure of ASR
system (Sequence level transcription accuracy) [12]. Advance-
ments in deep neural networks have greatly influenced the per-
formances of speech recognition systems. Recent developments
such as connectionist temporal classification objective function
and attention mechanism have enabled end-to-end training for
developing acoustic models [12, 13, 14]. End-to-end networks
have enriched acoustic models to train without any pre-trained
alignments between the acoustic sequence and the label se-
quence. End-to-End training reduces the mismatch between
the true error measure of the system and the objective function
which is optimized while training. Apart from the theoretical
advantages, end-to-end networks require large amounts of data
to train and generalize well. Studies have shown that in the
presence of larger sized datasets the performance of end-to-end
systems is equivalent to hybrid systems using a pronunciation
model and language model [15, 16, 17]. Recent Subspace mix-
ture model has performed superior to traditional speech recog-
nition systems, they have exhibited efficient parameter estima-
tion in limited data scenarios [18, 19].

Multilingual ASR using global phone-sets have been stud-
ied in [20, 21, 22]. Sharing some acoustic model parameters
have been explored for training multilingual speech recogni-
tion [23, 24, 25]. Multi-task architectures have been explored
for training a multilingual speech recognition, a hat swap ar-
chitecture has been mostly explored where lower layers are
shared across languages but the higher layers are specific to a
language [24, 25]. Subspace Gaussian mixture models have
been explored for multi-lingual speech recognition by shar-
ing the subspace defining parameters shared across the lan-
guages [18]. The efficiency of grapheme, phoneme-based mul-
tilingual speech recognition systems have been studied using
RNN-CTC based acoustic models in [26], language feature vec-
tors have been employed in addition to features to condition
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the systems on language identity. An adaptation mechanism
by learning the hidden unit contribution have been explored for
multi-lingual and cross-lingual adaptation methods [27]. Re-
cently multilingual ASR for 9 Indian languages comprising
1500 hrs of data has been presented in [28] using Listen attend
and spell (LAS) architecture. This model uses a union of mono-
lingual phone-sets comprising of 960 characters to train a single
unified model by jointly optimizing acoustic model, pronuncia-
tion model, and language model. In-spite of using the union of
phone-sets the joint-model has performed better than monolin-
gual models due to the availability of large data for optimizing
the model. Most of the studies that have explored multi-task
architectures have used multi-lingual data to train monolingual
systems or systems with certain parameters shared across lan-
guages. In an operating environment, either a front-end lan-
guage identification (LID) system has to be used to switch to the
corresponding monolingual-acoustic model or the best possible
hypothesis from all the monolingual models have to be chosen.
The former approach demands a front end LID to be very ac-
curate and robust, and the latter requires all the monolingual
systems to be operated in parallel. Operating these systems in
code-mixed environments gets really complex and challenging.
An acoustic model that can seamlessly handle multiple Indian
languages without any prior information of the language is re-
quired. This study considers the use of a common phone-set as
an efficient approach for handling multiple languages in a sin-
gle system. This study explores acoustic modeling approaches
that are more suitable to train a joint acoustic model for Indian
languages using common phone-set.

The remaining paper is organized as follows: Section 2
describes the database and the speech recognition frameworks
used in this study. Experiments, results, and discussion are pre-
sented in section 3. Conclusion and future scope are presented
in section 5 and section 6.

2. Database & Experimental setup for
end-to-end speech recognition system

2.1. Database

The database is provided by Speech Ocean.com and Microsoft
which is released as a part of “Low Resource Speech Recog-
nition Challenge for Indian languages-Interspeech 2018”. The
database comprises of data from three different languages i.e.,
Telugu Tamil and Gujarati. The dataset comprises of a 40 hour
training set and 5 hour testing set.

2.2. Common phone-set

In this study, a common phone-set was used which is a shared
representation across languages. A parser to convert utf8 to
IT3 [29] has been used to convert the text to the IT3-format [7].
The text in IT3 is used to generate the pronunciation sequences
for all the words. All the multilingual ASR systems used in this
study are trained using common phone-set.

2.3. Experimental setup

In this work, an end-to-end ASR has been developed using deep
bidirectional Long short term memory networks (LSTMs) [30]
using connectionist temporal classification (CTC) [11] objec-
tive function.
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2.3.1. Deep-bidirectional LSTMs

For the input sequence S = (s1, s2, $3, ....., ST) the sequence
of hidden states computed by an bidirectional-LSTMs layer is
given by H = (h1, ha, hs, ...., ). At each time step ¢ the for-
ward and backward hidden outputs are concatenated and used
as input to the next layer i.e. hy [E), ;1:} The hidden state
sequence is computed using the following equations.

it = o(Wisse + Winhe—1 + b;) (D
Jo = 0o(Wisse + Winhe—1 + by) @)
0t = 0(Wosst + Wophe—1 + bo) 3)
¢ = tanh(Wesse + Wephe—1 + be) “4)
ct = fexcio1 +it*x G )]
h: = o: * tanh(ct) (6)

The activations of input gate, forget gate, output gate and mem-
ory memory cells are given by i, f:, o:, ¢ respectively. The
weight matrices W.; connect inputs with the units, where as
W ., connects the previous hidden states with the units.

2.3.2. CTC-objective function

Connectionist temporal classification (CTC) is an objective
function used to align two sequences of different length [11].
An end-to-end speech recognition system can be trained us-
ing CTC objective function and it would not require any frame
level alignment between the acoustic sequence and the label se-
quence. An additional blank label is added to the set of target
labels and the probability of not emitting any label at a particu-
lar time step is represented using a blank label. As the acoustic
sequence and the label sequence are of different lengths an in-
termediate representation called CTC-path is used to learn the
alignment between the acoustic sequence and label sequence.
CTC-path gives the target label sequence at frame level and is
obtained by repeating the non-blank labels, inserting a blank be-
tween two different non-blank labels. The target label sequence
is represented by the set of all possible CTC-paths.

An input sequence of X = (z1, w2, s, ..., TT), the prob-
ability of a label sequence being L is obtained by summing the
conditional probability P(I|X) over all possible CTC-paths.

PX) = Y PUX) = 3 T[ PGk @)

leQ(L) feq(r) t=1

Here (y) is the set of all possible CTC-paths. The con-
ditional probability of a label at each time step, P (I+|z;) is esti-
mated using the network. The network is trained using gradient
descent to maximize equation 7, and the forward-backward al-
gorithm is employed to compute gradients [11].

2.4. Subspace-Gaussian mixture models

In a conventional acoustic model, states of HMM are modeled
using GMMs. A high-dimensional super-vector of GMM pa-
rameters from all the states is expected to lie on a low dimen-
sional manifold common to all the states [19]. Though SGMM
uses the GMM as its underlying distribution, but the parameters
in an SGMM are shared across the states. These parameters de-
scribe the sub-space of the GMM parameters. The individual
states can be described using relatively low-dimensional vec-
tors which are the coordinates in the subspace. SGMM can
be seen as a compact representation for HMM state distribu-
tions. SGMMs perform significantly better than HMM-GMM.



In limited data scenarios, SGMMs have delivered much better
performances [18].

3. Experiments, Results & Discussion

Two different acoustic modeling approaches have been explored
for training a joint acoustic model i.e, SGMM and RNN-CTC.
Recipes from Kaldi-toolkit have been used for training SGMM
models. The SGMM-models trained during the study have
used 8000 sub-states, and a diagonal UBM of 400 dimensions.
End-to-end speech recognition system in this study, has em-
ployed deep bidirectional long short-term memory networks
(Bi-LSTMs) optimized using CTC objective function. A hy-
perparameter search has been performed to obtain optimal ar-
chitectural choices. It has been observed that Deep Bi-LSTMS
layers with 3, 4 hidden layers are optimal for training mono-
lingual and joint acoustic models respectively, each layer com-
prised of 320 units. A learning rate of 0.0001 is used with a
batch size of 1. The learning rate is reduced by a factor of 0.5
when a decrease in the validation accuracy is observed. RNN-
CTC networks are optimized using Adam optimizer [31] with
exponential decays on first and second order momentums are
given by 0.9 and 0.99 respectively. The performances of various
acoustic models are presented in Table. 1. Monolingual acous-
tic models trained using SGMM model has been presented in
row 2. Row 3 is performance obtained using the joint acoustic
model trained using the data from all the three languages. Per-
formances of monolingual acoustic models trained using RNN-
CTC based acoustic models have been presented in row 4.

Table 1: Performances of speech recognition systems trained
during the study.

Dev set Eval set
Acoustic model Telugu | Tamil | Gujarati || Telugu | Tamil | Gujarati
Monolingual-SGMM 21.69 |19.63| 14.51 || 21.75 |19.36| 21.73
Joint-SGMM 26.53 |24.65| 17.41 || 26.22 |24.77| 26.14
Monolingual-CTC 21.68 |21.10| 15.07 || 21.80 |20.90| 22.94
Joint-CTC 21.28 |21.12| 14.86 || 21.73 |20.73| 21.98
Joint-CTC-
Residual connections 21.25 |21.07| 14.80 || 21.69 |20.87| 21.93
Joint-CTC-
Gaussian noise 21.25 |21.10| 14.82 || 21.49 |20.66| 21.97
Joint-CTC-
Language ID 21.41 |20.54| 14.62 || 21.34 |20.63| 21.64
Joint-CTC-
Sub-samp+Gaussian noise | 21.26 [20.53| 14.40 || 21.52 |20.44| 21.62
Joint-CTC-
Sub-samp+Gaussian noise
mono-LM 20.61 |20.16| 14.19 || 20.55 [19.90| 21.07
Context-dependent phones
+Sub-samp
+Gaussian noise 21.11 |20.18| 14.75 || 21.32 {19.95| 21.91
Context-dependent phones
+Sub-samp+
Gaussian noise+mono LM | 20.65 [19.82| 14.61 || 20.71 [ 19.58 | 21.69

Apart from handling the acoustic variabilities due to the
language, a multilingual speech recognition should handle dif-
ferent orthographies of various languages. As Indian languages
share same phonetic space, there can be words with same pro-
nunciation in different languages. When different orthographies
are used in the system with a common phone set, this word-
phone sequence pairs stand as different entities in the pronun-
ciation model. Such words could be erroneously decoded even
when the acoustic model has produced the correct phone se-
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quence. This could be efficiently avoided by using text in IT3
format [29]. IT3-format are any other language independent
mapping which could map the words in different languages with
same phone sequence as a single entity would be more benefi-
cial in training a multilingual ASR. In this work, we have con-
sidered IT3 as the language independent phone sequence based
representation. In the present database, out of 140K words,
there are 2K words with same phone sequences but different
orthographies due to different languages. The performance of
joint acoustic models trained using RNN-CTC has been pre-
sented in row 5 of Table 1. The transcriptions from training
utterances in IT3-format have been used to train a trigram lan-
guage model. The pronunciation model contains unique words
from all the three languages in IT3-format and the correspond-
ing phone sequences.

Residual connections in neural network architectures have
lead to a better convergence [32, 33]. In this study, a joint acous-
tic model has been trained using B-LSTMs with skip connec-
tions between two successive hidden layers. The use of these
skip connections have eased the convergence during the start of
the training but the performance gains are less significant. Use
of skip connections have increased the training time. The per-
formance of joint acoustic model using residual connections has
been presented in row 6 of Table. 1. Due to a huge increase in
training time, residual connections have not been used further
in the study. For regularizing the network, 10% of the randomly
sampled training examples are chosen and white Gaussian noise
(0=0.075) is injected to these features [34]. The performance
of these networks is presented in row 7 of Table.1.To condition
the joint acoustic model with the language identity, one-hot lan-
guage representative vector has been used in tandem with the
features [28] and this system has reduced the word error rates
but not significantly. The performance of joint acoustic model
conditioned on language identity is presented in row 8 of Ta-
ble. 1.

RNN-CTC based acoustic model is trained to align two se-
quences of different lengths, unlike the conventional models
RNN-CTC does not require any alignment from a pre-trained
model. RNNs being sequential in nature reducing the sequence
length has reduced the training time, this has been achieved by
using pyramidal architectures [35, 14, 17]. Sub-sampling the
acoustic sequence by a factor of 2 or 3 has not shown any degra-
dation in the performance of RNN-CTC based acoustic models.
In this work, features from successive acoustic frames are con-
catenated reducing the sequence length by a factor of 2 and the
performance obtained by the sub-sampling has been presented
in row 9. Performance of speech recognition systems using a
joint acoustic model, a common pronunciation model and the
language model specific to that language is presented in row
10 of Table. 1. In this work, an RNN-CTC joint acoustic model
has been trained to model context-dependent phones ie., phones
which occur at starting middle and end of the words, singletons
are considered as independent tokens. RNN-CTC is trained it to
minimize the token error rate where the tokens used are context-
dependent phones and the results are presented in row 11, 12
of Table 1. Though the token accuracy of this systems is 7%
lesser but this has produced the WER comparable to the joint
acoustic model trained with context independent phones. Use
of context-dependent phones has helped in pruning out compet-
ing decoding paths. But using the context-dependent phones
has increased the number of tokens by a factor of 4 and this has
lead to an increase in training time i.e., time for computing CTC
loss.

In this study, various approaches for sub-sampling the



acoustic sequence has been explored and the results are tab-
ulated in Table. 2. To subsample the acoustic sequence by
a factor of 2 alternate frames can be dropped or successive
frames can be appended, the performances attained by this sub-
sampling methods are presented in row 2, 5 of Table.2. Using
a frame shift of 20 ms and a frame size of 30 ms for computing
the features would also reduce the acoustic sequence by a fac-
tor of 2 and the performance obtained by this sub-sampling has
been presented in row 3. The training data can be augmented
by a factor of 2 dropping even and odd frames alternatively such
sampling is termed as Augmented-sub-sampling. Augmented-
sub-sampling would reduce the sequence length and also aug-
ment the dataset.

Table 2: Various approaches for sub-sampling the acoustic se-
quence.

Dev set Eval set
Sub-sampling Telugu | Tamil | Gujarati || Telugu | Tamil | Gujarati
Dropping 2231 |21.28| 15.12 || 22.46 |21.01| 22.64
Frame-shift 20 ms 21.97 |21.43| 14.94 || 21.97 |21.17| 22.73
AUG-sub-sub-sampling | 21.90 |21.21| 14.84 || 21.84 [21.03| 22.42
Appending frames 21.45(20.67| 14.72 || 21.42 |20.66| 21.97

3.1. Results & Discussion

The performance of joint acoustic models trained using HMM-
SGMM is poorer than the performance of HMM-SGMM mono-
lingual models. Using HMM-SGMM for training a joint acous-
tic model has lead to an increase in word error rate (WER). In-
dian languages share same phonetic space and differ in phono-
tactics. The tri-phones modeled by HMM do not share com-
mon distribution across different languages. This has lead to
the poor performance when a joint acoustic model is trained us-
ing HMM-SGMM. Performance monolingual RNN-CTC based
acoustic models is less than the monolingual HMM-SGMM
system which is in accordance with the earlier studies. The
joint acoustic model trained using RNN-CTC has performed
better than the monolingual systems. Unlike HMMs, RNN-
CTC acoustic models are trained to model context independent
phones. The variabilities due to multiple languages have been
effectively handled using RNN-CTC.

In the earlier studies, it has been observed that condition-
ing the acoustic model on language identity (language ID) has
improved the performance [28, 26]. Mostly the systems have
used the global phone-set which is a union of phone-sets from
all the languages. When a joint acoustic model is trained to pre-
dict the labels from global phone-set the information about the
language identity has improved the performance. It has been
observed that the systems trained in such fashion more faith-
ful to language ID, upon encountering a wrong language ID
the system has transliterated the acoustic sequence using the
phone sequence corresponding to the mismatched language ID.
The joint acoustic models trained in this study use a phone-set
which is same for all the languages, unlike the union of mono-
lingual phone-sets. Conditioning the model to language ID has
helped in convergence but has not significantly improved the
performance. Sub-sampling the acoustic sequence in and end-
to-end ASR has reduced the training time, this reduction of
frames has been explored by dropping the alternate frames, us-
ing pyramidal architectures where the sequence length gets re-
duced along the depth of the network. It has been observed that
sub-sampling the acoustic sequence by a factor >3 has affected
the convergence of the models.
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Decoding the test utterance using a monolingual language
model with the joint acoustic model has performed better than
the system using the combined language model. Rather than
conditioning the joint acoustic model on the language identity
and using front-end language identification system. The LID
systems developed using phonotactics and syntax of a language
are more robust and reliable [36]. LID decision derived from
phonotactics of the joint acoustic model could be used to select
the corresponding language model to decode the test utterance.
A multi-pass decoding could also be a viable solution using a
common language model initially to obtain an initial hypoth-
esis and which could give information about the language of
the hypothesized test utterance. A second pass decoding with
a monolingual model or re-scoring the lattices with the mono-
lingual language model could be beneficial in building multi-
lingual ASR systems for Indian languages.

4. Conclusion

A joint acoustic model is an effective solution for training a
multi-lingual speech recognition system, rather than using a
front-end LID to switch between monolingual models or us-
ing parallel monolingual models. In an under-resourced sce-
nario, use of acommon phone-set could be an efficient approach
for sharing data across the languages. This work studies the
amenability of various acoustic models i.e., HMM-SGMM and
RNN-CTC for developing a joint acoustic model using common
phone-set. It has been observed that end-to-end systems which
model context independent phones as a basic unit have per-
formed better than HMM-SGMM system which models context
dependent tri-phone. RNN-CTC based acoustic models have
shown to be more promising while using common phone-set.
Conditioning the joint acoustic model model with language ID
has not improved the performance significantly. Converting or-
thographies of various languages to IT3-format can be helpful
in handling the words in different languages with same pronun-
ciation sequences. Use of a joint acoustic model and text in
IT3 format could be a viable solution to operate multilingual
and code-mixed speech recognition systems irrespective of in-
put languages. Using a monolingual language model in a multi-
pass decoding framework would improve the performances sig-
nificantly.

S. Future scope

Apart from multiple advantages, training end-to-end networks
need large sized datasets for better generalization. Recent ad-
vancements in neural networks such as zone-out, use of vari-
ational Bi-LSTMS could improve the performances of joint
acoustic models. Architectures such as LAS, use of multi-
Head attentions, minimum WER based training could improve
the performances significantly. Apart from performance, the
decoders in sequence-to-sequence models are auto-regressive
in nature and this would increase the latency of the systems.
Recent studies which use the latent variables rather than auto-
regression could reduce the latency in decoders.
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