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Abstract 

Singing voice synthesis (SVS) systems generate the singing 
voice from a musical score. Similar to the text-to-speech 
synthesis (TTS) field, SVS systems have also been greatly 
improved since the deep neural network (DNN) framework 
was introduced. Although they share many parts of the 
framework, the main difference between TTS and SVS 
systems is that the feature composing method, between 

linguistic and musical features, is important for SVS systems. 
In this paper, we propose a Korean SVS system based on a 
long-short term memory recurrent neural network (LSTM-
RNN). At the feature composing stage, we propose a novel 
composing method, based on Korean syllable structure. At the 
synthesis stage, we adopt LSTM-RNN for the SVS. According 
to our experiments, our composed feature improved the 
naturalness of the voice, specifically in any part that has to be 
pronounced for a long time. Furthermore, LSTM-RNN 

outperformed the DNN based SVS system in both quantitative 
and qualitative evaluations. 
Index Terms: Singing voice synthesis, speech synthesis 

1. Introduction 

Singing voice synthesis (SVS) systems generate the singing 
voice from a musical score which contains both linguistic 
(lyrics) and musical features (notes, tempo, etc.). This is 
different from ordinary speech synthesis systems, which are 
dependent on only the linguistic features. Therefore, SVS 

systems are composed of two parts: composing the linguistic 
and musical features, and synthesizing the singing voice from 
the model learned by using the composed input features. 
Traditionally, SVS systems are based on the hidden Markov 
model (HMM) [1, 2], which can model several acoustic 
features of a singing voice simultaneously. While HMM needs 
fluent composed features (such as quinphone, the number of 
phonemes in a current syllable, and musical information of the 

note), its sound quality is known to be unnatural because 
HMM has a chronic over-smoothing problem in both the 
frequency and time domains [3]. 

Recently, many types of neural network based models 
have been proposed for text-to-speech synthesis (TTS) 
systems: deep neural network (DNN) [4], recurrent neural 
network with long-short term memory (LSTM-RNN) [5], 
Wavenet [6], and Tacotron [7]. These models significantly 

outperformed the traditional HMM-based TTS systems [8], [9], 
while they need fewer linguistic features than HMM-based 
TTS systems. In the same manner, some of the neural network 
based models were adopted for SVS systems. In [10] and [3], 
DNN and Wavenet were adopted for their acoustic models, 

respectively. Additionally, due to the importance of pitch for a 

natural sounding singing voice, both [3] and [10] proposed a 
post-processing method for the pitch, based on the heuristic 
signal processing method. This implies that learning the 
expressive pitch from the model itself is still a challenge. This 
is because the amount of singing voice data recorded in the 
studio, with the corresponding musical score, is quite limited, 
whereas there exists a number of musical factors (such as 
melody, note, and accent) that make pitch variation 

complicated. In addition to the post-processing of the 
predicted acoustic features, the deficiency in the amount of 
data also exhibits the importance of the feature composing 
method, considered to the feature engineering, which can 
reduce the complexity of the data distribution that the model 
needs to learn. As in [11], the feature composing method is 
dependent on the language used, because of their individual 
syllable structures. So far, the feature composing methods are 

mainly based on Japanese and English, although Spanish has 
also recently been considered [3]. 

In this paper, we provide the method of how to compose 
Korean lyrics with musical features, such as note and slur, 
based on the syllable structure of Korean at syllable, phoneme, 
and frame level. From the available methods which use frame-
level input features, this paper adopts the LSTM-RNN for 
SVS system, with some post-processing proposed to 

synchronize the duration of synthesized singing voice with the 
musical note duration. According to our experiments, we 
found that: (a) our proposed feature helped in handling the 
parts of the musical score that contained long slurs, (b) LSTM-
RNN outperformed the DNN based SVS system in both 
quantitative and qualitative evaluations. 

2. LSTM-RNN based Korean singing voice 

synthesis system 

The main components of our system are feature composing 
and synthesis. For the feature composing part, we examine 
ways to compose the Korean lyrics and musical features at 
syllable, phoneme, and frame levels. For the synthesis part, we 
present our synthesis model which consists of duration and 
acoustic models with a vocoder, based on the framework in [5]. 
The duration model predicts the duration of the target 

phoneme from the input features, at phoneme level. This 
predicted duration is used to convert the phoneme level input 
features to the frame level. The acoustic model predicts the 
acoustic features such as mel-generalized cepstral features 
(MGC), log fundamental frequency (LF0), mean band 
aperiodicity (BAP), and voicing decision (VUV) from the 
input features at frame level. Finally, a vocoder generates the 
singing voice using predicted acoustic features from the 
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acoustic model. The details of each part are described as 

follows. 

2.1. Feature composing 

In this section, we formally described the feature composing 

step from the musical score. Let � = �x1, …,  xN� be the input 
sequence corresponding to the musical score, and 

xi = �li, M1�, M2�, M3�� where: N is the number of musical 

notes in the musical score, [∙] is the concatenation operation 

over feature dimension,  li ∈ 	SYL, – , X� (in which the SYL is 

Korean syllable), ‘–’ is the slur, and X is the rest. M1i, …, M3i 
are musical features, as described in Table 1. M4 and M5 are 

excluded from xi because M2 represents those features, which 
will be described in the following section. Note that except for 
the musical features in Table 1, we have also tried to use other 
musical features that can be extracted from the musical score 

such as beat, the number of measures, etc. However, using 
these features added some noise sounds to the singing voice of 
which deteriorates the quality. 

From x, the acoustic model should generate 

� = �y
1
, …, y

T
� where y

i
 = �MGCi,  LF0i , BAPi, VUVi� 

corresponding to the acoustic features, and T is the number of 
frames. However, as T is much larger than N, this can be a 
problem because we adopt vanilla LSTM-RNN which predicts 
the outputs at each time step of the inputs, so that both the 
length of the input and output sequences must be matched. In 
order to solve this problem, the length of x is extended by 
sequentially going through the syllable, phoneme, and frame 

level feature composing steps as follows. 

2.1.1. Syllable level 

A musical note has two important features: pitch (M1) and 
duration (M4). We encode the duration of the note into 

categorical features, and for the pitch, we encode it into 
numerical features that represent frequency. For example, if a 
pitch of note is C with octave 1, it was encoded to 32 Hz. This 
numerical representation is beneficial compared to categorical 
representation as it reduces both the feature dimension and the 
number of model parameters. The tempo (M5) is encoded by 
numerical features, and this determines the speed of the music. 
Because we have unified the unit of tempo into a quarter note, 

from now on we will define “tempo” as the “number of 
quarter notes per minute”. We can extract the physical time of 
a note from the tempo and duration information. For example, 
if the tempo is set to 100, the time corresponding to a quarter 
note is 0.6 s. We defined it as M2, and this has been included 
in our feature set. Note that the musical rest also has a duration, 
although it does not have a pitch. If a rest occurred, we 
assigned a value of zero for the pitch and we assigned ‘X’ for 
li. 

We define the symbol ‘–’ as a slur, which means the 
successive phonation of a preceding syllable. The slur was 
encoded into the categorical feature (M3). When the slur 

occurs, it is necessary to substitute ‘–’ for the syllable by 
considering the actual pronunciation, depending on the  
preceding syllable. We used the substitution rule from the 
Korean syllable structure, which consists of phonemes that 
have a beginning consonant (BC), a middle vowel (MV), and 

an optional final consonant (FC). If the syllable begins with a 
vowel sound, i.e., silent BC (S-BC), ‘o’ is assigned. In other 
words, the combination of BC, MV, and optional FC form a  
 

 
Korean syllable. Note that a Korean syllable is composed of a 
minimum of two phonemes, i.e., BC and MV must be 

included in a Korean syllable. The substitution rule for li+1 

which is set to ‘–’, when the preceding syllable li is set to SYL: 
composed of (S-BC+MV), (BC+MV), (S-BC+MV+FC) and 
(BC+MV+FC) is described as follows in sequence: 

   

   

   

   

1

1

1

1

S-BC MV , S-BC MV ,

BC MV , S-BC MV ,

S-BC MV , S-BC MV+FC ,

BC MV , S-BC MV+FC ,

i i

i i

i i

i i

l SYL l SYL

l SYL l SYL

l SYL l SYL

l SYL l SYL









    

    

    

    

 (1) 

where ‘+’ is the combination operator in a Korean syllable. 
The following results are the examples of (1) derived when 

li+1 is set to ‘–’, and li is sequentially set to 이 (/ih/), 기 (/g ih/), 

잉 (/ih ng/) and 깅 (/g ih ng/): 

 

   

 

   

   

1

1

1

1

/ih/ , /ih/ ,

/g ih/ , (/ih/),

/ih/ , /ih ng/ ,

/g ih/ , /ih ng/ ,
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i i
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이 이

기 이

이 잉

기 잉

  (2) 

where the phonemes with respect to the pronunciation of 
Korean syllables are represented in the brackets, by referring 
to the CMU pronouncing dictionary [12]. 

According to our experiments, this substitution helped the 
model by indicating what the model actually phonates in 
response to the slur. If we treated the slur as a single symbol, 
like a rest, the model would learn numerous cases of 
phonating responses to preceding syllables, which made the 

learning of the model difficult. However, the synthetic singing 
voice after substitution was only natural in the case where M1 

of xi and xi+1 were different. In the case where M1 of xi and 

xi+1  are the same, our substitution caused discontinuous 
phonation, because in this case the actual phonation is like 
phonating the preceding syllable for a long time, rather than 
phonating the preceding syllable and substituted syllable from 

(1) discretely. Therefore, in the case that M1 of xi and xi+1 are 

the same, we combined xi and xi+1 into xi
� , which has the same 

feature as xi and xi+1 , except for the M2. The M2 of xi
�  was 

calculated as follows: 

 
1M2 of M2 of M2 of .i i i i i ix x x 

      (3) 

As a result, we can get the xSYL = �x1
� ,  … ,   xN-K

� � from x 

with xi
� = �li

� , M1i, M2i, M3i�  where: K is the number of 

combinations from (3), and li
�∈	SYL, X�. 

2.1.2. Phoneme level 

At the phoneme level, we decomposed the syllable in li
�
 into 

either 	BC, MV�  or 	BC, MV, FC� . For example, if the 

syllable in li
�
 consisted of 	BC, MV, FC�, the decomposition 

result became as follows: 

Table 1: Musical feature description (C: Categorical 
feature, N: Numerical feature). 

Description Symbol Example Type 

Pitch of note M1 C4, Bb3 N 

Duration from tempo M2 0.6 s N 
Slur M3 True, False C 

Duration of note M4 Quarter, 16th C 

Tempo M5 100, 120 N 
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    1 2, , ,i j j jDecompose x x x x 
      (4) 

where �xj
��,  xj+1

�� , xj+2
�� � is the sequence of decomposed elements, 

which are as follows: 

    BC of , M1 , M2 , M3 .j i i i ix l    (5) 

  1 MV of , M1 , M2 , M3 .j i i i ix l
    (6) 

  2 FC of , M1 , M2 , M3 .j i i i ix l
    (7) 

As described in (5)–(7), all musical features were set to the 

same as the syllable level. In the case where li
�
 is set to X (rest), 

all features were the same as the syllable level. As a result, we 
obtained a sequence of phoneme level input features 

xP=�x1
��, …,  xL

��� , where L is the number of phonemes. 

2.1.3. Frame level 

At the frame level, using the duration at the phoneme level 

and xP, we composed a sequence of frame level input features 

xF=�x1
���, …,  xT

���� , where xk
���  is the input features at frame 

level. We used the ground truth phoneme level duration in the 
training phase, and the predicted result of our duration model 

in the synthesis phase. Note that if �xk
���, …,  xk+t

��� �  are 

extracted from xj
�� , they share input features with xj

�� with an 

additional numerical feature for determining the position of 
the current frame in the current phoneme. The position values 
were normalized to have a value of zero to one. 

2.2. Synthesis model 

The duration model comprised 2 steps: prediction and post-
processing. The prediction step was conducted by LSTM-

RNN, which was trained with ��  and the ground truth 
phoneme level duration with the mean squared error loss 
(MSE). Then the post-processing normalized the predicted 

duration using M2i  which is the summed result of the 
decomposed phoneme-level durations, corresponding to the ith 

syllable. For example, if the syllable-level acoustic features xi
� 

are decomposed as in (4), the normalization is conducted as 
follows. 

 
2

M2
, , 1, 2,m i

m j

k

k j

dur
dur m j j j

dur





    


  (8) 

where durj : j+2  is the predicted duration of xj : j+2
��  , and durj : j+2

�
 

is the normalized duration. It should be noted that the 

normalized duration was used to transform xP to the xF in the 
synthesis phase. 

The acoustic model consisted of 3 parts: MGC and BAP 

(MB), LF0, and the VUV feature. Each part adopted the 

LSTM-RNN, used xF as its inputs, and was trained separately 
with its individual loss. For the LF0 and MB parts, the loss 
was set to negative log-likelihood (NLL) with the Gaussian 
mixture model (GMM) as shown in this sequence: 

 arg

, , , ,

1 1

log | , ,   1, 2,
pNT

t et

p p n p i p n p n

i n

loss y p  
 

      (9) 

where p = 1 corresponds to the LF0 part, p = 2 corresponds to 

the MB part, Np is the number of mixtures, πp, n is the mixing 

coefficient, μ
p, n

 is the mean vector, and Σp, n  is the diagonal 

covariance matrix of nth mixture. Note that � πp, n, μ
p, n

, Σp, n� 
are predicted from the softmax, linear output layer and 
exponential activation function followed by linear output layer, 

respectively [13]. The y
p, i

target
 is from the ground truth acoustic 

features. The y
1, i

target
 is set to LF0i  and y

2, i

target
 is set to 

�MGCi, BAPi�. For the VUV part, the softmax function was 
applied to the output of VUV LSTM-RNN, and then cross-
entropy loss was used. This separation is necessary for 
effective learning, because acoustic features are known to be 

independent of each other [3]. Therefore, if acoustic features 
are trained in one model, the impact of the learning signal (i.e. 
the gradient) from an acoustic feature (e.g. LF0) can 
deteriorate due to the learning signal from other acoustic 
features which makes the model underfit. This fact is also 
supported from the result in [3], [10] which showed that the 
separation is helpful for increasing the subjective evaluation 
score. However, according to our experiments, the separation 

of BAP and MGC didn’t show any outstanding improvement, 
so these features were used simultaneously for learning one 
model to reduce the learning time. 

At the synthesis phase, the mean vector of the most 

probable mixture component was used for prediction purposes 
[14]. Finally, the predicted acoustic features were used as 
inputs for the vocoder, to synthesize the waveform. 

3. Experiments 

3.1. Experimental setup 

3.1.1. Dataset preparation 

For the dataset, we recorded 52 Korean children’s songs, 
performed by a female singer. Of these, 44 songs were used to 
train, 3 songs were used to validate, and 5 songs were used to 
evaluate our model. Note that the length of each song was too 

long to train or evaluate all at once, due to memory issues, so 
we first decomposed the songs into segments, and each 
segment had four measures, which could be extracted from the 
musical score. The average length of each segment was 7.2 s. 
The sampling rate for the singing voice was originally 44.1 
kHz, then reduced to 22.05 kHz. Out of the acoustic features, 
25 MGC and 2 BAP coefficients were extracted based on a 
WORLD vocoder [15], and one LF0 was extracted from 

RAPT [16] implemented in SPTK [17] with a 5 ms hop time. 
In addition, 2 VUVs (one-hot coded) were extracted by 
applying a threshold to the LF0 feature. Therefore, 30 acoustic 
features in total were used as the outputs of our acoustic model. 
The input features had 50 dimensions (each feature is 
described in Table 2), and the phoneme identity was encoded 
as a one-hot vector. The input features were z-score-
normalized for training. To normalize the input features for 

evaluation, the same normalization factors used in training 
were applied. The BAP and MGC were also normalized in the 
same way. The ground truth phoneme alignment was firstly 
found by applying the forced alignment with a well-trained 
HMM [18]. In some cases when the acoustic context of the 
singing voice is quite different from the ordinary speech, the 
forced alignment didn’t work well; hence, we manually found 
the phoneme alignment for those cases. 

Table 2: Input feature description at frame level (C= 
Categorical feature, N= Numerical feature). 

 

Description  Dimension Type 

Phoneme identity 46 C 

Pitch of note 1 N 
Slur 1 C 
Position 1 N 

Duration from tempo 1 N 
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3.1.2. Parameter setting and baseline methods 

All LSTM-RNNs which consist of acoustic and duration 
models have one forward-directed hidden LSTM layer, with 
128 memory blocks. For the baseline methods, a DNN was 
adopted instead of LSTM-RNN for the acoustic and duration 
models, which is similar to the framework used in [10]. All 
DNNs of the duration and acoustic models each had 2 hidden 
layers, and 1024 hidden units. Furthermore, because a DNN 
cannot inherently model the context information, DNN inputs 

included both past and future, one context at slur and pitch 
level, and two contexts at phoneme level. Therefore, the input 
features for the DNN had a dimension of 238. Furthermore, to 
verify the effect of the number of mixtures, we compared our 
model results when the number of mixtures was set to one, 
two and four. The DNN had four mixtures. All the 
aforementioned parameters were found from our validation set. 

3.1.3. Training methods 

All acoustic and duration models, including the baseline 
methods, were trained using a mini-batch stochastic gradient 
descent (SGD) method, with Adam-based learning rate 
scheduling [19]. Also, the exponential decay of the learning 
rate was applied. The initial learning rate was set to 0.001, 

then decayed with a base of 0.95 per 50 learning steps. The 
initial weights were initialized randomly. For regularization 
purposes, dropout [20] was applied with a rate of 0.5. The 
early stopping method [21] was applied, to decide on the 
proper number of learning steps. 

3.2. Investigation to the effect of proposed features 

In order to verify the effect of our proposed features in the 

lyrics with slur, specifically, in the case of [살 (/s aa l/),  –], 

we compared a spectrogram of the original waveform and 
synthesized waveform with our proposed features that applied 

(1), and a synthesized waveform with the features that did not 
apply (1), as shown in Figure 1. As expected, if (1) was not 
applied, the spectral energy drastically decreased in the 

segment of ‘–’, corresponding to 0.2–0.7 s in (c). This implies 
that learning the slurred segments from the model itself is 
difficult, so that it is necessary to inform the model what 

actually should be pronounced for a ‘–’. In (b), the spectral 
energy was remained in 0.2–0.7 s, while the shape of the 
harmonic spectral envelope was different from (a). This is 
because there is a difference between natural pronunciation 
and the artificially injected pronunciation from (1). 

Furthermore, we investigated 20 musical phrases 
including slurred segments to verify the perceptual aspects. 
For all slurred segments in 20 musical phrases, without the 
proposed features, the phonation was quite unnatural because 

it suddenly stopped although it should be kept. In contrast, 
with proposed features, the naturalness of phonation was 
improved while the slurred segments were somewhat 
monotonous compared to the original phonation because some 
musical context such as vibrato was not modeled. 

3.3. Objective experiments 

To evaluate the performance of the proposed system 
objectively, we used Mel-cepstral Distortion (MCD), Band 
Aperiodicity Distortion (BAPD), F0 Root Mean Squared Error 
(RMSE), FPR (False Positive Rate), and FNR (False Negative 
Rate). FPR and FNR represented the voiced/unvoiced (VUV) 
error rate. The evaluation results are described in Table 3 

 

Figure 1: The spectrogram corresponding to lyrics ‘살 (/s aa 

l/)’ (0-0.2 s), ‘–’ (0.2-0.7 s). (a) is from the ground truth 
waveform, (b) is from our synthesis model with proposed 
features, and (c) is from our synthesis model with features not 
applying the substitution rule, as described in (1). 

Table 3: Evaluation results. The number besides the 
LSTM is the number of mixtures. 

 

 DNN LSTM-1 LSTM-2 LSTM-4 

MCD (dB) 8.61 6.01 5.57 5.43 

F0-RMSE 62.00 39.56 39.56 39.40 

BAPD 

(dB) 

21.77 15.44 14.64 14.58 

FPR (%) 54.15 20.34 20.21 18.10 

FNR (%) 1.87 5.94 6.81 5.43 

MOS 2.87±0.12 3.04±0.15 3.15±0.11 3.24±0.10 
 

which shows that LSTM-4 outperformed all the baseline 
methods in almost all metrics, except for the FNR. DNN 
showed an outstanding result for the FNR measure, however, 
it cannot be concluded that the DNN is better than the LSTM-
RNN based VUV classifier because the DNN showed quite 
higher FPR than the LSTM-RNN, which implies that the DNN 
classified most of inputs as voice sounds. This is because, 
while DNN learned from the singing voice which has much 

more voiced sounds than unvoiced sounds [3], has many 
parameters (~1294k) than LSTM-RNN (~91k), which can 
easily lead to overfitting to voiced sounds.  

3.4. Subjective experiments 

The subjective listening test was carried out to evaluate the 
naturalness of the synthesized songs. A total of 20 Korean 
subjects participated in the evaluation, to measure the mean 
opinion score (MOS) on a scale from one (poor) to five (good). 
All synthesized 37 musical phrases, which were decomposed 
from five songs, were presented to the subjects using 
headphones. The last row in Table 3 shows the experimental 
results. As described in Table 3, all LSTM based approaches 

outperformed the DNN based approach. Among the LSTM-
based systems, there was no significant difference according 
to the number of mixtures, while the objective measure was 
slightly better as the number of mixtures were increasing. 

4. Conclusions 

In this paper, we proposed a feature-composing method to 
combine linguistic and musical features including how to deal 
with the slur to use as the input features for a Korean SVS 
system. We adopted the LSTM-RNN as our synthesis model, 
and showed that our proposed SVS system outperformed the 

baseline systems in both objective and subjective evaluations. 
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