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Abstract 

Automatic speaker verification (ASV) systems are 

vulnerable to various types of spoofing attacks such as speech 
synthesis, voice conversion and replay attacks. Recent 
research has highlighted the need for more effective 
countermeasures for replay attacks, which can be very 
challenging to detect, however replayed speech has previously 
shown frequency band-specific differences when compared 
with genuine speech. In this paper, we propose the use of 
long-term temporal envelopes of subband signals using a 

frequency domain linear prediction (FDLP) framework. This 
flexible framework makes use of temporal envelope 
information, which has not previously been investigated for 
replay spoofing detection. Evaluations of the proposed system 
and its fusion with other subsystems were carried out on the 
ASVspoof 2017 database. Interestingly, smoother temporal 
envelopes, based on very long windows of up to 1 second, 
seem to be most successful and show good prospects for 
performance improvements via fusion. 

 

Index Terms: ASVspoof 2017, frequency domain linear 
prediction, convolutional neural network, replay attack 

1. Introduction 

Automatic Speaker Verification (ASV) systems have become 
a prominent form of biometric authentication for many 
reasons. With the development of ASV technology, however, 
malicious attacks that try to deceive an ASV system are also 
getting smarter. These attacks, commonly known as spoofing 

attacks, are of four main types: speech synthesis, voice 
conversion, replay and impersonation [1]. The amount of 
research that has been done on speech synthesis and voice 
conversion attacks is significantly higher than on replay and 
impersonation attacks. While impersonation has practical 
limitations, replay attacks are capable of posing a greater 
threat than speech synthesis and voice conversion [2, 3]. A 
replay attack simply means an adversary recording speech 

from a target speaker and playing it back to deceive an ASV 
system. Due to the availability of high quality consumer 
devices, a replay attack can be conducted with relative ease by 
a person with no technical expertise. 
      Some earlier studies on replay attack detection 
countermeasures have involved calculating a similarity score 
between an incoming utterance and a model based previous 
input utterances, and rejecting the input if the score exceeds a 

threshold [4, 5]. Other studies have focused on discriminating 
replayed speech based on the added channel noise patterns [6] 
and increased reverberation [7]. Although these studies have 
shown good results, detection of replay attacks has practical 

limitations such as dealing with a large number of unknown 
acoustic conditions [8]. 

The ASVspoof 2017 Challenge was organized as a means 
to assess these limitations [8]. The database provided in the 
challenge consists of replayed utterances with a variety of 
replay configurations [9]. Even though many successful 
systems were proposed in the challenge, the overall results 
from ASVspoof 2017 version 1 show that the generalizability 
of countermeasures for diverse replay attacks is still an open 
problem.  

Most of the anti-spoofing systems currently proposed for 
replay attack detection utilize conventional short-term spectral 
variations of speech signals to extract discriminating features. 
These include Mel Frequency Cepstral Coefficients (MFCCs), 
Linear Prediction Cepstral Coefficients [10] and novel features 

such as Instantaneous Frequency Cepstral Coefficients [11] 
and Constant Q Cepstral Coefficients [9]. Although short-term 
spectral features have proven to be effective, it is also 
important to explore the effect of long-term temporal domain 
features, an alternative way of analyzing a speech signal, in 
the case of replay attack detection. 

Evidence of the use of long-term temporal features in 
speech systems can be found in speech synthesis and voice 
conversion attack countermeasures.  Modulation features 
extracted from magnitude/phase spectrum of a speech signal 
can capture long-term temporal information [12]. Tian et al. 
have utilized delta and acceleration coefficients of MFCC 
features to gather temporal information up to 0.1s [13].  

The idea of linear prediction in the frequency domain was 
first proposed in [14] in the context of audio coding. 
Kumaresan et al. [15, 16] have also explored this concept, 

treating it as linear prediction in the spectral domain. In their 
approach, the envelope of the signal was obtained without 
computing the Hilbert transform of the signal, using linear 
prediction in the discrete Fourier transform (DFT) domain. 
Athineos et al. [17] have investigated the same problem by 
considering finite length discrete time signals. One important 
contribution is the use of the (real-valued) discrete cosine 
transform (DCT) with a long window in place of the DFT on 

the signal. The residual component of this process captures the 
frequency modulation component.  

This paper investigates the use of temporal envelopes 
extracted from long frames. These envelopes can be obtained 

from frequency subbands of the signal using frequency 
domain linear prediction (FDLP) [18]. Even though FDLP 
based features have been investigated in the context of speech 
synthesis attacks [19], they have not been explored in a replay 
spoofing attack context.  

Interspeech 2018
2-6 September 2018, Hyderabad

661 10.21437/Interspeech.2018-1574

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1574.html


2. FDLP Feature Extraction 

2.1. FDLP Temporal Envelope 

The duality property of time-domain and frequency-domain 
properties of signals allows the application of linear prediction 
concepts in the frequency domain [17]. In the proposed 
approach, linear prediction is applied to the frequency domain 
representation of the signal. The resultant signal is an 
approximation of the temporal envelope of the signal. 

The residual signal from time domain linear prediction 
applied to a speech signal contains the excitation source 
information of the signal. Thus, the spectral envelope and 
residual signal are expected to contain complementary 
information. Hence, it is safe to assume that the residual signal 
obtained from FDLP could contain complementary 
characteristics to the temporal envelope obtained using the 
FDLP process.  

Similarly to the process in [17], this paper uses a DCT to 
transform the time domain signal to the frequency domain. 
The DCT is applied to each long speech frame, and the DCT 

coefficients are grouped per subband, following which a linear 
prediction analysis is conducted in the frequency (DCT 
coefficient) domain on a per-subband basis. The all-pole 
magnitude response of the linear predictive filter thus obtained 
is taken as the temporal envelope w[n]. In Figure 1, the FDLP 
temporal envelopes for the first subband of a genuine 
utterance, and the same utterance recorded and replayed using 
two different playback devices are shown. It can be seen that 

the temporal envelopes are markedly different between all 
three examples. These are typical, and in preliminary 
experiments less variability was observed in the replayed 
speech than the genuine speech.  

2.2. FDLP Temporal Envelope Features 

There are different ways in which features can be extracted 
from the FDLP temporal envelope and residual. In this paper, 
we propose two features that are extracted from the FDLP 
envelope and residual, and an overview of the feature 
extraction process is given in Figure 2(a).  

Temporal Centroid Amplitude (TC) 

This section introduces the weighted time average amplitude 
of the temporal envelope as a derived feature, named as 
temporal centroid amplitude (TC), to represent the FDLP 
envelope. If the temporal envelope is w[n], ��� for each 

subband � is given by, 
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∑ �∙
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��
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��

,                                   (1)  

 
where n is a (subsampled) time index and �� and �� are lower 

and upper time limits respectively. The positioning of TC 
depending on the form of the envelope is illustrated in Figure 
3. Here, a 400-point temporal envelope is divided into five 
equal non-overlapping segments and TC is calculated for each 

segment. It is evident that variations of the temporal envelope 
can be captured by the TC feature. 

 

Residual Centroid Amplitude (RC) 

The variations in the residual are modelled to provide a by-
product of FDLP process as shown in Figure 2(a). The FDLP 
residual e[k] is computed as the difference between subband 
signal and the envelope estimated from frequency-domain 
linear prediction in the discrete cosine transform domain. The 
variations in the residual are modelled by taking an amplitude 
spectrum (DFT) of e[k] to produce |E[n]|, as shown in Figure 
4. Finally, the residual centroid amplitude (RC) is computed as  

 

��� =	
∑ �.|�[�]|�
��
∑ ��
��

,                         (2) 

where � is the subband index, n is a (subsampled) time index 

 
Figure 1: Example subband FDLP temporal envelopes w[n] 
of the first subband for (a) genuine speech; (b) and (c) two 
different examples of replay attack speech from the same 

speaker.  

 

a) 

b) 
                                

 
Figure 2: (a) shows the block diagram of the FDLP temporal envelope and residual feature extraction process and (b) shows the 

TC and RC feature matrices of one frame  

 

(a) (b) 
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and �� and �� are the lower and upper time limits of the 
segment. 

 

Figure 3: Illustrative temporal envelope for the kth subband, 

showing extraction of the TC features on a per-temporal 
segment basis. TC shifts right or left from the temporal mid-
point of each segment of the FDLP envelope depending on 

whether the envelope is rising or falling respectively. 

3.   Experimental Setup 

3.1. Database 

The experiments reported in this paper were conducted on the 
ASVSpoof 2017 dataset [9], which consists of training data of 
1.09 hours of genuine and 1.03 hours of replayed speech 

utterances sampled at 16 kHz. The evaluation set comprises 
speech utterances from several playback and recording 
devices, which are unseen in the training and development 
sets.  

3.2. Feature extraction 

The speech utterances were segmented into long-term speech 
frames of length 1s, with a frame shift of 250ms. The DCT 
was performed using 16000 points on each speech frame 
followed by subband decomposition using 50 equal band 

triangular-weighted filters. The choices of uniformly spaced 

filters and the number of filters were determined using the 
performance on the development set. Frequency domain linear 
prediction with 160 poles was performed on each subband and 
the FDLP envelope was determined, then sampled 400 times 
per frame. The 400-sample FDLP envelope was segmented 
into five non-overlapping segments (see Figure 3) and the 
temporal centroid feature was computed for each segment. 
These five feature values when concatenated represent each 1s 

frame for a subband as shown in Figure 2(b) (Red-dashed 

box). Here, ���
�  represents the temporal centroid amplitude of 

the ith segment within the kth subband of the selected speech 

frame. Hence, ����
�, ���

�,…���
�� is the temporal centroid 

amplitude vector of the kth subband of the frame. Following 
this, the DCT of the logarithm of the temporal centroid 
amplitudes is computed along the subbands as shown in 
Figure 2(b) (Blue-dashed box) and these are concatenated 
across segments to produce the final feature matrix (TC) for 
that frame. Similarly, a residual centroid amplitude feature 
matrix (RC) is also extracted for each frame as shown in 
Figure 2(b). 

3.3. Backend Classifiers 

Two modelling approaches were employed, namely Gaussian 
Mixture Models (GMMs) and Convolutional Neural Networks 

(CNN), followed by fully connected layers. The GMM 
modelling approach was used with the two proposed features, 
TC and RC, whereas the CNN approach was used with the 
raw FDLP envelope, comprising of 400 points in each 
subband. The GMMs for genuine and spoofed data were 
trained with 512 mixture components each.  The CNN 
subsystem was used to investigate the potential of the FDLP 
envelope to discriminate between genuine and replayed 
speech.  

The proposed CNN architecture consisted of 4 
convolutional layers with a filter size of 5x5 and a stride of 
2x2, followed by two fully connected layers. Each 

convolutional layer was followed by a max pooling layer, a 
batch normalization and a dropout of 0.5. L2 kernel 
regularization was employed to further reduce the overfitting.  
Rectified Linear Units (ReLU) were used as activations. A 
Xavier normal kernel initializer was applied to each 
convolutional layer. The final convolutional layer outputs two 
likelihood scores as probabilities for the two classes, taking 
256 outputs from the previous fully connected layer as inputs. 

A SoftMax activation function was used for the calculation of 
likelihood probabilities.  

4. Experimental Results 

Preliminary experiments were carried out using the 
development set of the database (Section 3.1).  Equal error 
rate was used as the evaluation measure for all experiments.  

Special attention was given to the importance of the type 
of filterbank to be used, since this provides an insight into the 
significance of each frequency band in the DCT domain for 
FDLP based replay attack detection.  It was found that the 

type of filterbank has a major effect on the performance of the 
system. Experiments on TC features, using mel-scale, inverse-
mel scale and uniform band scale on the development set 
resulted in the EER (%) values given in Table 1. From Table 
1, it is evident that the equal band frequency scale is the most 
suitable for FDLP based features. This may be due to the 

    
 

Figure 4: Example FDLP residuals e[k] for subband 1 of (a) 
genuine speech; (b) and (c) two different examples of replay 

attacks from the same speaker; and their amplitude spectra 

|E[n]| for (d) genuine speech; (e) and (f) for the replayed speech 
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importance of the high frequency spectral roll-off of replay 
devices and possibly the recording environment.  

 

Table 1: Effect of the frequency scale on EER (%) for 
the development set of the database 

Feature Mel-scale Inverse-Mel Uniform 

TC 22.68 9.21 8.03 

 

Having chosen the system parameters, experiments were 
conducted on the evaluation set of the database. Both training 
and development datasets were pooled together for model 

training. EER values obtained for the two systems using TC 
and RC and the FDLP envelope are given in Table 2 below. A 
spectral centroid magnitude (SCM) [20] based system [10] 
was used as the baseline for comparison. This system extracts 
the spectral centroid magnitudes of the signal using short-term 
frames and classifies the speech files using two 512 
component GMMs. It employs 40 SCM values with their delta 
and acceleration coefficients as features. The delta and 
acceleration coefficients represent some of the temporal 

structure of the signal. The proposed FDLP envelope features 
(with CNN) show slightly higher performance compared to 
the baseline. Although TC and RC based systems have 
performed somewhat more poorly than the baseline system, 
the dimensionality of the proposed features are also much 
lower than that of the baseline SCM features.  

It is also interesting to note that the CNN based system 
performed better than the GMM based systems employing the 
proposed TC and RC features, as well as the baseline. This 
suggests that the temporal envelopes carry further information 
that can be used for replay attack detection. 

Having obtained promising results with individual 
systems, score-level fusion of the three systems was 
investigated, to assess the complementary nature of each of 
them. The “FoCal Toolkit” [21] was used to carry out a score 
level fusion and the results of the fused system are also given 
in Table 2. 

Table 2: Results on the evaluation set 

 
System 

EER 
(%) 

 Baseline – SCM (single system) [10] 11.49 

 Baseline – Light CNN (fused system) [22] 6.73 

S1 TC with GMM (single system) 14.89 

S2 RC with GMM (single system) 15.90 

S3 FDLP envelope with CNN (single system) 11.13 

 Fusion: S1 + S2 + S3 (fused system) 9.70 

 

The error rate of the fused system was less than that of the 
three individual systems. This suggests that the information 
provided by each of the three systems may be complementary. 
When these results are compared with the SCM based baseline 

system, there is a relative improvement of 15.51%. A second 
baseline [22], which is a score level fusion of three other 
systems, is also provided for comparison. However, it should 
be noted that this system is a very complex fused system that 
comprises of an i-vector front-end based support vector 
machine implementation, a light CNN [23] system with log-
magnitude spectrum as the front-end and a stacked recurrent 
neural network (RNN) and CNN system. 

5. Conclusion 

This paper has presented an investigation of temporal 
envelope features, extracted using the frequency domain linear 
prediction framework, for the detection of replay spoofing 
attacks. Two components of interest in this framework are the 
temporal envelope, which represents the amplitude modulation 

component, and the residual component, which represents the 
frequency modulation component. Results presented here 
show that both components are sensitive to replay attacks, 
providing reasonable detection as individual low-feature-
dimension systems. When applying the high-dimensional full 
temporal envelope representation to a convolutional neural 
network, the system performance outperformed a recent 
baseline. Finally, combining all three systems using score-
level fusion brought significant reductions in error rate relative 

to any of the individual systems. This work demonstrates the 
potential of this framework, which can be investigated further 
to exploit the rich time-frequency information, in particular 
smooth temporal envelopes representing modulation 
components. 
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