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Abstract
The murmur produced by the speaker and captured by the Non-
Audible Murmur (NAM)-one of the Silent Speech Interface
(SSI) technique, suffers from the speech quality degradation.
This is due to the lack of radiation effect at the lips and lowpass
nature of the soft tissue, which attenuates the high frequency-
related information. In this work, a novel method for NAM-to-
Whisper (NAM2WHSP) speech conversion incorporating Gen-
erative Adversarial Network (GAN) is proposed. The GAN
minimizes the distributional divergence between the whispered
speech and the generated speech parameters (through adversar-
ial optimization). The objective and subjective evaluation per-
formed on the proposed system, justifies the ability of adver-
sarial optimization over Maximum Likelihood (ML)-based op-
timization networks, such as a Deep Neural Network (DNN),
in preserving and improving the speech quality and intelligibil-
ity. The adversarial optimization learns the mapping function
with 54.2 % relative improvement in MOS and 29.83 % ab-
solute reduction in % WER w.r.t. the state-of-the-art mapping
techniques. Furthermore, we evaluated the proposed framework
by analyzing the level of contextual information and the num-
ber of training utterances required for optimizing the network
parameters, for the given task and database.

Index Terms: Non-Audible Murmur (NAM), generative adver-
sarial network (GAN), whispered speech.

1. Introduction
Silent Speech Interface (SSI) provides a platform for produc-
ing an acoustically intelligible and sensible speech, allows pro-
cessing of speech and extraction of speech-specific features, in
absence of an intelligible speech [1, 2]. An SSI records the
signal produced from the elements of the human speech pro-
duction system, such as articulators, palate, jaw movements,
neural pathways, and the brain to a certain extent. The digi-
tal representation produced through the interface can be used as
an assistance to the speech-handicapped people (those suffering
from the vocal tract disorder), and conveys the hidden informa-
tion embedded in the silent communication systems. The inter-
face has the great potential in generating more natural sounding,
intuitive, spontaneous, and intelligible speech for the children,
older, and speech-handicapped people, who require an effort in
producing the speech, due to the inability of articulators’ move-
ment.

Integration of SSI with cellphone finds an important appli-
cation in the modern-day communication network, where silent
communication is preferred at the public places. The perfor-
mance of speech processing in noisy environments can be sig-
nificantly improved when speech recognition is performed on
the silent speech. Here, the ambient noise would not interfere

with the interface due to the sensor’s robustness [1], and non-
acoustically recorded speech signal. In addition, patients suf-
fering from the vocal fold-related disorders, such as vocal fold
paresis and paralysis [3, 4], etc. may not be able to produce
an intelligible speech, due to the absence of partial or com-
plete vocal fold vibrations. This inability of producing speech,
severely hampers the life of the speech-handicapped person,
since speech is considered as the most crucial way of commu-
nication [5]. Among the various available SSI techniques [6,7],
we focus on the Non-Audible Murmur (NAM) microphones,
that are attached behind the talker’s ear and can capture a very
quietly uttered speech [8–11].

Study reported in [8] investigated the use of NAM, as a
speech communication interface and proposed to analyze the vi-
brations produced within the human body, instead of analyzing
the dispersed acoustic vibrations in the air. The sensor recorded
parameters can then be used for speech recognition. NAM are
the speech cues produced by the interactions of human speech
organs, such as tongue, palate, lips, etc. and are transmitted
through the soft tissue of the head [8]. This low power breathy
voice produced due to the articulatory movements is termed
as a silent speech or murmur [8]. Thus, the NAM waveform
lacks in preserving the quality and intelligibility, due to the low-
pass nature of the soft tissues and lack of radiation effect at the
lips [8, 12]. Moreover, a complete description of sound radia-
tion at the lips and diffraction above the head is quite difficult.
In particular, there is no closed form expression of radiation
impedance [chapter 4, pp. 130, [12]]. Thus, improving the in-
telligibility of the NAM speech remains a challenging task. The
conversion of NAM-to-Whisper speech (NAM2WHSP), would
make the speech communication possible for the patients suf-
fering from the vocal fold disorder. The NAM2WHSP conver-
sion improves the intelligibility and enhances the quality of the
silent or breathy speech, which lacks the characteristics of vocal
fold movements. Traditional NAM-to-audible speech conver-
sion can be achieved through speech recognizer and synthesis-
based approach [13] and mapping-based approaches [14–16].

In this paper, we attempt to use Generative Adversarial Net-
work (GAN) for NAM2WHSP conversion task. To the best of
authors’ knowledge, this is the first attempt of its kind to ap-
ply GANs for NAM2WHSP conversion. Effectively, through
supervised learning algorithm, such as GAN, we propose to
learn the mapping function between the NAM speech and the
whispered (audible) speech. First, we check the intelligibil-
ity of the converted audible speech, mapped through a Deep
Neural Network (DNN). However, the likelihood maximization
criteria, such as a Mean Square Error (MSE) loss only reduce
the numerical errors between the whispered and the generated
speech parameters, which may not necessarily lead to percep-
tually optimum speech [17, 18]. Moreover, the intelligibility
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and objective scores, suggest the need of exploiting other Deep
Learning (DL) alternatives, that essentially reduces the percep-
tual divergence between the groundtruth and the estimated. To
achieve this, we propose to exploit GAN, which optimizes an
adversarial loss by minimizing the distributional divergence be-
tween the model and the data distribution. Furthermore, we
also analyze the effect of varying the contextual information at
the input of the network and varying the number of training ex-
amples required for optimizing the network parameters, in the
NAM2WHSP conversion task. In this paper, we have shown
that, when the network is trained in an adversarial framework
(such as GAN), the parameters get optimized within a few iter-
ations, with lesser number of training examples, and produces
natural sounding speech with improved intelligibility, quality,
and perception, than the network trained using ML-based opti-
mization criteria (such as, DNN).

2. Proposed NAM2WHSP System
The proposed GAN-based NAM2WHSP framework is illus-
trated in Figure 1. First, the cepstral features are extracted from
the NAM and whispered speech signal. The recording of the
NAM and whispered speech is done simultaneously. Hence,
we do not require any alignment before learning the mapping
function. In this work, we have applied DNN and GAN-based
conversion techniques to learn the mapping function. As both
NAM and whispered speech are unvoiced sounds, we do not ap-
ply F0 conversion technique. At the time of testing, we extract
the cepstral features from the input NAM signal and convert it
using the learned mapping function. In the end, the vocoder is
employed for converting the features into the whispered speech
signal.

Figure 1: Proposed schematic representation of the GAN-based
NAM2WHSP conversion system.

2.1. Generative Adversarial Network (GAN)

The recent performance improvement on modeling deep repre-
sentation and learning a suitable mapping function using GAN,
have shown a significant rise in speech technology-related ap-
plications, such as Voice Conversion (VC) [19,20], speech syn-
thesis [21] and Speech Enhancement (SE) [22–25]. GAN is a
generative network that implicitly models the high-dimensional
data distribution [17,18]. Conventional generative models min-
imize the divergence between the model distribution Ŷ and
the data distribution Y . On the other hand, GANs are trained
discriminatively to generate the samples that are indistinguish-
able from the actual samples y drawn from the true distribution
y ∼ Y .

The GAN model comprises of a generator (G) and a dis-
criminator (D). The G model learns a complex relationship be-
tween the samples x from the prior distribution X to samples
y ∼ Y , and a discriminative model (D) aims to maximize the
probability of correctly discriminating between the real samples
y and the samples generated by the G network [18]. Both the

networks are trained simultaneously in an adversarial way, forc-
ing the G network to generate the samples belonging to Ŷ , that
closely follows Y . Such a setup leaves the D network confused
in discriminating the samples belonging to Y and Ŷ . Hence,
GAN produces the perceptually optimum speech by minimiz-
ing the distributional difference (i.e., divergence) between the
true samples and the generated samples [18, 21]. In particular,
G, i.e., GNAM2WHSP, will convert NAM to Whisper speech
signal, and the D, i.e., DWHSP will detect whether converted
whisper is perceptually similar to the true whisper. This objec-
tive can be expressed through the following optimization func-
tion:

min
G

max
D

Ey∼Y [logDWHSP(y)]

+Ex∼X [1− log(DWHSP(GNAM2WHSP(x)))].
(1)

However, the vanilla-GAN (v-GAN) architecture initially pro-
posed in [18], may sometimes fail in optimizing the network
parameters and thereby fails in preserving the speech intelligi-
bility and the quality [25]. The adversarial training only mini-
mizes the distributional divergence between Y and Ŷ , but may
fail in generating the mapped speech parameters corresponding
to the given speech frames at the input. That is, as training pro-
ceeds, the G network produces the samples that may closely
follow Y , however, may not correspond to the given samples
at the input [25]. Regularization of the adversarial loss has
shown to be beneficial in learning the corresponding mapped
features [22, 25]. Since our task is to learn the mapping func-
tion between the NAM and the whispered speech, we rely on
the regularized adversarial objective function proposed in our
earlier work [25], and can be mathematically formulated as:

min
D

V (DWHSP) = −Ey∼Y [logDWHSP(y)] −

Ex∼X [1− log(DWHSP(GNAM2WHSP(x)))],
(2)

min
G

V (GNAM2WHSP) =

−Ex∼X [log(DWHSP(GNAM2WHSP(x)))]+
1

2
Ey∼Y,x∼X [log(y)− log(GNAM2WHSP(x))]

2,

(3)

where Ey∼Y denotes the expectation over all the samples y with
distribution Y [25].

3. Experimental Results
3.1. Experimental Setup

The proposed algorithm is evaluated on the CSTR NAM TIMIT
Plus corpus [26]. This corpus contains 420 newspaper texts,
randomly taken from the Herald Glasgow. For our experimen-
tal analysis, 421 utterances of NAM speech and its correspond-
ing whispered speech signals are taken from the Herald text.
400 random utterances (appx. 400k number of frames) are
used to train the models and the test set comprises of the re-
maining 21 utterances. We train two models to evaluate the re-
sults. The first model is a DNN, with parameters optimized us-
ing the Minimum Mean Square Error (MMSE) criteria between
the whispered speech and the predicted whispered speech cep-
stral representation. The second model is a GAN with MMSE
regularization. The DNN and G network in GAN follows the
identical architecture, with the three hidden layers. Having a
uniform architecture helps in analyzing the advantage of using
adversarial loss characteristics over the MMSE-based ML opti-
mization. Each layer has 512 units with Rectified Linear Unit
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Figure 2: MCD and PESQ analysis of different NAM2WHSP systems, Panel I: symmetric context and Panel II: asymmetric context.
(ReLU) activation, whereas, the output layer has linear activa-
tion function. The D network in GAN also has three hidden
layers, with tanh activation function, as suggested in [25]. The
output layer has sigmoid activation that predicts the likelihood
of predicted whispered speech cepstra belonging to the true dis-
tribution. Both the models are trained for 150 epochs, using an
effective batch size of 1000 frames [25]. The parameters are op-
timized using an Adam optimization [27], with a learning rate
of 0.001. We train the network by extracting the Mel Cepstral
Coefficients (MCCs) from the speech signal. The original ut-
terances of the database are downsampled from 96 kHz to 16
kHz. The 25-dimensional (dim) MCCs (including the 0th coef-
ficient) are computed with 25 ms Hamming window and 5 ms
overlap between the consecutive frames. For analysis-synthesis,
we have used AHOCODER [28].

3.2. Objective Evaluation

The effectiveness of the NAM2WHSP conversion system is
measured using Mel Cepstral Distortion (MCD) and Percep-
tual Evaluation of Speech Quality (PESQ) [29]. The traditional
MCD measure is given by [30]:

MCD[dB] =
10

ln10

√√√√2
25∑

i=1

(mt
i −mc

i )
2 , (4)

where mt
i and mc

i are the ith MCCs of the whispered and con-
verted whispered speech cepstral features. The PESQ measure
evaluates the quality of the speech [29]. The lower MCD and
higher PESQ measure signifies the improved system perfor-
mance using the proposed system.

3.2.1. Effect of contextual information in NAM2WHSP system

Since speech is a sequential data, extracting the contextual fea-
tures from the speech, captures the local features (including
coarticulation) and preserves the crucial harmonics [31, 32].
In speech perception, it has been shown that the surrounding
acoustic context, impacts the human perception [33–35]. Re-
cently, researchers from the neuroscience of speech perception
have tried to identify the underlying representations in the pri-
mary and secondary auditory cortex, and have examined the in-
formation modulated by varying the context [36]. Motivated

from this, we analyze the effect of varying context size win-
dow (with window length 0, 3, 5, 7, 9, and 11) at the net-
work input. Here, we extract the different symmetric contextual
NAM speech features. These networks are trained to predict
the 25-dim MCCs of the whispered speech. Out of the total 400
training utterances, 350 random utterances are used for training
the models and remaining 50 utterances are used for validation.
Once the network is trained, the epoch with the least MSE on
the validation set is selected for the testing purpose. Figure 2
clearly demonstrates the effect of context window length vari-
ations on the performance of the developed systems in terms
of both the objective scores. Panel I (Figure 2 (a) and (b))
shows the MCD and PESQ scores, for the systems developed
on the different number of symmetric context frames. The ef-
fectiveness of the GAN-based NAM2WHSP system over DNN
is clearly observed in both the objective test. From both the
PESQ and MCD analysis, it can be seen that system with 9
window context (i.e., four frames on the left and four on the
right) yields the highest PESQ and the almost second least MCD
score. Hence, the 9 frames context window system is selected
for our further analysis.

Inspired by the study reported in [32], we also analyze the
importance of training models by taking an asymmetric contex-
tual frames as an input to the network (Panel II in Figure 2). No
significant variations could be observed in terms of MCD scores
for GAN-based systems (as shown in Figure 2 (c)), whereas
significant improvement in the performance of the GAN-based
system over DNN-based system, is observed in terms of PESQ
score (as shown in Figure 2 (d)) (notably 4LC1R). From Fig-
ure 2 (c) and (d), it can be observed that, when more weight is
given to the left phoneme in an asymmetric combination, the
GAN significantly outperforms the other asymmetric combina-
tions.

3.2.2. Analysis w.r.t. amount of training data

We also analyze the models on varying the size of training data.
Figure 3 (a) and (b) shows that the GAN predicts better MCD
and PESQ score, with an increased number of training utter-
ances. Initially, DNN dominates the GAN, however, as the
number of training utterance increases, the objective scores pre-
dicted by the DNN deteriorates significantly. This may be due
to the fact that, initially with a very few training utterances, the
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Figure 3: (a) MCD and (b) PESQ analysis of the various developed NAM2WHSP systems w.r.t. the amount of available training data.

discriminator in the GAN is very confident about its decision
of rejecting the generated cepstrum. Moreover, with genera-
tor exposed to a very few training utterances, though indirectly,
may not be able to sufficiently fool the discriminator. How-
ever, with the increased exposure of training utterances, the ad-
versarial training forces the generator to produce the cepstrum
that approximately follows the data distribution, and success-
fully confuses the discriminator. It has to be noted that the poor
performance measure exhibited by DNN, may be due to the ab-
sence of such an adversarial nature in training (ML-based opti-
mization).

3.3. Subjective Evaluation
The key objective of the proposed work is to extract the message
recorded via NAM microphone. Hence, we focus on the various
intelligibility tests for the subjective evaluation. We consider
two tests, namely, Word Error Rate (WER) and Mean Opinion
Scores (MOS) test for the intelligibility [37]. Total 31 listeners
(21 males and 10 females with age between 18 to 30 years) took
part in all the subjective tests. We used high-quality Sennheiser
headphones for the subjective evaluations.
Table 1: % WER analysis for the developed NAM2WHSP sys-
tems

NAM DNN GAN (Proposed) WHSP
WER (%) 69.3 65.5 35.67 5.74

Number of Replays 3.39 3.2 2.2 1.43

In WER test, we asked subjects to transcribe eight ran-
domly played utterances from the original NAM and whis-
pered speech (WHSP), and predicted whispered speech using
the DNN and the GAN-based systems. Moreover, we asked the
subjects not to replay any utterance more than four times (in
order to avoid cognitive related bias in hearing and subjective
judgment) during their transcription. Based on their submis-
sion, % WER is calculated as [38]:

WER(%) =
I +D + S

T
× 100, (5)

where I, D and S represents the number of insertions, deletions,
and substitutions, respectively, and T is the total number of
words in a given utterance. From Table 1, it can be observed
that the % WER of the NAM is very high. However, for the
whispered speech, % WER is less. Our proposed GAN-based
system obtained an absolute reduction of 29.83 in % WER com-
pared to the DNN-based NAM2WHSP system. In addition, the
number of replays required for the GAN-based system is less
than the one required by the DNN-based system. We used the
same DNN architecture along with the same hyper parameters,
which is used in the generator.

Five utterances from each system were selected to evaluate
the MOS for the intelligibility test. Subjects were asked to rate

each randomly played utterance based on the intelligibility from
the different systems on a five-point scale (1= not at all intelli-
gible; 2= hardly one or two words are intelligible; 3= half of
the message is intelligible; 4= mostly intelligible, and 5= com-
pletely intelligible). The analysis of MOS along with the 95 %
confidence interval is shown in Figure 4. There is a clear 54.2
% of relative improvement in the MOS obtained using GAN-
based system compared to the DNN-based NAM2WHSP sys-
tem. Lower MOS for the NAM signal clearly indicates the less
intelligibility of the NAM signal. This is primarily due to the
lack of radiation effect at the lips and lowpass nature of the soft
tissue. Hence, the objective of extracting the linguistic message
from the NAM signal using the GAN-based approach is indeed
achieved to a certain extent.

Figure 4: MOS analysis for intelligibility of various systems
along with 95 % confidence interval.

4. Summary and Conclusions
In this work, we proposed the novel GAN-based NAM2WHSP
conversion system. The GAN-based training achieves 54.2 %
relative improvement in MOS and 29.83 % absolute reduc-
tion in WER w.r.t. state-of-the-art DNN-based systems, due to
its adversarial nature. The objective as well as the subjective
evaluation indicates the importance of minimizing the distribu-
tional divergence in learning the mapping function and preserv-
ing the speech quality and achieving large intelligibility gains
over the traditional ML-based optimization techniques. In ad-
dition, we identify the impact of symmetric as well as asym-
metric contextual frames, and the number of training utterances
required for optimizing the network parameters. We plan to
evaluate the effectiveness of the proposed font-end DNN/GAN-
based NAM2WHSP conversion system via stat-of-the-art whis-
per speech recognition system.
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