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Abstract
Batch normalization, or batchnorm, is a popular technique of-
ten used to accelerate and improve training of deep neural net-
works. When existing models that use this technique via batch-
norm layers, are used as initial models for domain adaptation
or transfer learning, the novel input feature distributions of the
adapted domains, considerably change the batchnorm transfor-
mations learnt in the training mode from those which are ap-
plied in the inference mode. We empirically find that this mis-
match can degrade the performance of domain adaptation for
acoustic modeling. To mitigate this degradation, we propose
an inference-invariant transformation of batch normalization,
a method which reduces the mismatch between training mode
and inference mode transformations without changing the in-
ference results. This invariance property is achieved by adjust-
ing the weight and bias terms of the batchnorm to compensate
for differences in the mean and variance terms when using the
adaptation data. Experimental results show that our proposed
method performs the best on several acoustic model adaptation
tasks with up to 5% relative improvement in recognition perfor-
mances in both supervised and unsupervised domain adaptation
settings.
Index Terms: Batch normalization, domain adaptation, transfer
learning

1. Introduction
Batch normalization (batchnorm) [1] is a useful technique to
accelerate and improve the training of deep neural networks.
This technique normalizes activations to reduce the effect of
internal covariate shift, which reduces the efficiency of neural
network training. Batchnorm makes it possible to use signifi-
cantly higher learning rates, and reduces the sensitivity to ini-
tialization. It has been used in many state-of-the-art deep neu-
ral networks, including convolutional neural networks such as
very deep convolutional neural networks (VGG) [2, 3] and deep
residual networks [4, 5].

Many state-of-the-art neural network models have batch-
norm layers and are often used as initial models for domain
adaptation and transfer learning. For example, a general pur-
pose acoustic model trained using large amounts of data from
various sources is a good initial point to train an adapted acous-
tic model for a specific call center with a small amount of tar-
get domain adaptation data [6, 7, 8, 9, 10]. In a low-resource
language scenario, a model trained with rich-resource language
data or multiple low-resource language data is a good starting
point to train an acoustic model for a target low-resource lan-
guage by replacing and randomly initializing only the top soft-
max layer [11, 12].

Batchnorm applies different transformations in training and
inference. In training, statistics of activations in the mini-batch
are used to normalize activations. In inference, the averages of

these statistics are used for the normalization. If the mini-batch
size is large enough and input feature distribution is i.i.d., the
parameter update of the neural network dominates the differ-
ence between these two transformations [13]. In such cases,
batchnorm effectively reduces the negative effect of internal co-
variance shift.

When domain adaptation or transfer learning starts, the
change in the input feature distribution increases the difference
between training and inference. In inference with a base model,
batchnorm uses averaged statistics of the original domain data.
In training, however, batchnorm uses statistics of the target do-
main data in the mini-batch. The distribution of their activa-
tions are different because the input feature distributions have
changed. We empirically observe that this mismatch can of-
ten degrade the performance of domain adaptation for acous-
tic modeling. Although the simplest way to compensate for
this mismatch would be to freeze the parameters of batchnorm
(batchnorm freezing), such a modification is likely to nullify the
advantages of using this technique.

We propose inference-invariant transformation (IIT) of
batch normalization to solve this problem. We use averages of
the statistics of the target domain adaptation data instead of the
original domain data for normalization in batchnorm. While
this change can reduce the mismatch, it can also change the
inference results. To compensate for the change in inference re-
sults, we numerically adjust the weight and bias parameters of
batchnorm in advance so that the inference results are invariant.
Experimental results on several acoustic model adaptation tasks
show that our proposed method performs better than or similar
to the performance of basic adaptation or batchnorm freezing.

The rest of this paper is organized as follows. Section 2
describes the batchnorm technique. In Section 3 we introduce
the IIT of batchnorm and summarize the proposed changes in
Fig. 1. After reviewing related work in Section 4, we evaluate
various techniques in Section 5 in both supervised and unsu-
pervised settings. Our proposed technique performs well and
provides up to 5% relative improvement over baseline system
performances. The paper concludes with a summary in Sec-
tion 6.

2. Batch Normalization
In the training mode, batchnorm normalizes input activations in
a mini-batch {x1...m} using the mean µB and variance σ2

B of
the mini-batch as follows.

batchnorm(xi) = γ
xi − µB√
σ2
B + ε

+ β, (1)

where γ and β are trainable parameters and ε is a low value,
such as 10e-4, to stabilize the transformation. #1 in Fig. 1 uses
(1) as batchnorm. Depending on the input activations in the
mini-batch, µB and σ2

B change, and so do their transformations.
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changed from µtraining and �training to µadaptation and �adaptation.
Concretely, we define

batchnorminference(xi) = �̂
xi � µadaptationq
�̂2

adaptation + ✏
+ �̂. (6)

By substituting left term of (6) by (4), we can calculate closed
form of �̂ and �̂ as

�̂ = �

q
�2

adaptation + ✏
q
�2

training + ✏
, (7)

�̂ = �
µadaptation � µtrainingq

�2
training + ✏

+ �. (8)

With these adjusted �̂ and �̂ and statistics of the target
domain as #6 in Fig. 1, we can get the same inference result
of #3.

We call this Inference Invariant Batchnorm Adaptation.
When domain adaptation starts after Inference Invariant
Batchnorm Adaptation,

batchnorm0
training(xi) = �̂

xi � µBp
�2

B + ✏
+ �̂ (9)

is used for batchnorm in the training mode. #7 in Fig. 1 repre-
sents this transformation. It is similar to #6, which is exactly
same with #3, because statistics in minibatch in adaptation
data is similar to that of adaptation data. Therefore, Inference
Invariant Batchnorm Adaptation makes it possible to use #3
as initial point of domain adaptation.

4. EXPERIMENTS

4.1. Supervised adaptation

Our first experiment is supervised domain adaptation of
Japanese narrowband (8k sampling data) model. Training
data for a original model is about 2k hours of various do-
main data. Adaptation data for domain adaptation is about 10
hours of recordings of a specific call center. We use manual
transcripts of it for supervised adaptation. Test data is about
0.5 hours of recordings of the call center.

We use very deep convolutional neural network (VGG) as
Acoustic Model (AM). The VGG operated on blocks of 48
consecutive 40-dimensional logmel frames augmented with
first and second derivatives. The logmels were globally vari-
ance normalized and mean normalized per utterance. Output
of AM is posteriors of 9.3k context-dependent phones. The
VGG has 13 convolutional layers and 5 fully connected lay-
ers. Table 1 shows the architecture of VGG used in the ex-
periment. Batchnorm layers are inserted after every Conv and
FC layers except the last layer. As for batchnorm layers after
Conv layers, we apply normalization for each frequency and

Table 1. VGG architecture
input size weight size

Conv1 48x40x3 7x5x3x64
Batchnorm1 (freqpad 2) 42x40x64 40x64
Conv2 42x40x64 3x3x64x64
Batchnorm2 (freqpad 1) 40x40x64 40x64
Conv3 40x40x64 3x3x64x64
Batchnorm3 (freqpad 1) 38x40x64 40x64
Conv4 38x40x64 3x3x64x64
Batchnorm4 (freqpad 1) 36x40x64 40x64
Maxpooling1 36x40x64 1x2
Conv5 36x20x64 3x3x64x128
Batchnorm5 (freqpad 1) 34x20x128 20x128
Conv6 34x20x128 3x3x64x128
Batchnorm6 (freqpad 1) 32x20x128 20x128
Conv7 32x20x128 3x3x64x128
Batchnorm7 (freqpad 1) 30x20x128 20x128
Maxpooling2 30x20x128 1x2
Conv8 30x10x128 3x3x128x256
Batchnorm8 (freqpad 1) 28x10x256 10x256
Conv9 28x10x256 3x3x256x256
Batchnorm9 (freqpad 1) 26x10x256 10x256
Conv10 26x10x256 3x3x256x256
Batchnorm10 24x8x256 10x256
Maxpooling3 24x8x256 2x2
Conv11 12x4x256 3x3x256x512
Batchnorm11 (freqpad 1) 10x4x512 4x512
Conv12 10x4x512 3x3x512x512
Batchnorm12 (freqpad 1) 8x4x512 4x512
Conv13 8x4x512 3x3x512x512
Batchnorm13 (freqpad 1) 6x4x512 4x512
Maxpooling4 6x4x512 2x2
FC1 3x2x512=3072 3072x2048
Batchnorm14 2048 2048
FC2 2048 2048x2048
Batchnorm15 2048 2048
FC3 2048 2048x2048
Batchnorm16 2048 2048
FC4 2048 2048x1024
Batchnorm17 1024 1024
FC5 1024 1024x9300

feature map. We inserted ReLU activation after every batch-
norm layer. The VGG was trained with the training data by
using the cross entropy and SGD with manually tuned learn-
ing rate and decay schedule.

The vocabulary comprised of 120K words, and the lan-
guage model (LM) was a 3-gram LM with 50M n-grams.

As for AM domain adaptation, we tuned learning rate and
decay schedule so that vanilla adaptation achieves the best
performance. we applied the fixed learning rate and schedule
for the other experiments.

“JP-1” column of Table 2 shows Character Error Rate
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2.1. Batch normalization

Batchnorm in the training mode normalize input activations
in a minibatch {x1...m} using mean µB and variance �2
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where � and � are parameters to be trained, ✏ is a small value,
say 0.0001, to stabilize the transformation. #1 in Fig. 1 repre-
sents this transformation. Depending on the input activations
in minibatch, µB and �2

B are changed and its transformation
transformation are changed.

In the inference mode, batchnorm do not use µB and �B .
Instead of them, running mean and variance of training data
µtraining and �training are used as follows.

batchnorminference(xi) = �
xi � µtrainingq
�2

training + ✏
+ �. (4)

µtraining and �training are estimated as running mean and vari-
ance using training data. #2 in Fig. 1 represents this transfor-
mation. Input activations do not affect this transformation.

If the mini-batch size m is large enough and input fea-
ture distribution is i.i.d., µB and �B is similar to µtraining and
�training, respectively. Therefore, #1 and #2 in Fig. 1 has simi-
lar inference results.

2.2. Domain adaptation of batchnorm

(4) is used for any input activations in any domain in infer-
ence. Even for different domain data, the same transforma-

tion is used. #3 in Fig. 1 shows target domain data of domain
adaptation data is transformed using (4).

When domain adaptation starts, on the other hand, mini-
batch statistics of target domain data is used for the normal-
ization. #4 in Fig. 1 shows target domain data is transformed
using (3), where µB and �B are calculated using activations
in a minibatch in the target domain data.

Because an input feature distribution of a target domain is
usually different from that of an original domain, statistics of
activations in inference µB and �B have considerably differ-
ent from µtraining and �training, respectively. Therefore, there is
mismatch between #3 and #4 in Fig. 1.

We can make µadaptation and �adaptation using adaptation data
by the same way to make µtraining and �training but different
data. µadaptation and �adaptation are similar to µB and �B for a
minibatch of target domain data. With these statistics, we can
modify the batchnorm in the inference mode as

batchnorm0
inference(xi) = �

xi � µadaptationq
�2

adaptation + ✏
+ �. (5)

#5 in Fig. 1 represents this transformation. Because µB and
�B is similar to µadaptation and �adaptation when domain adapta-
tion starts, #4 and #5 in Fig. 1 has similar inference results.

[3] proposed that using #5 instead of #3 in Fig. 1 as Ad-
aBN. They showed that AdaBN outperformed #3 in several
image classification tasks. However, we empirically found
that AdaBN do not improve performance for several acoustic
model adaptation tasks.

3. PROPOSED METHOD

We would like to use #3 in Fig. 1 as initial point of domain
adaptation for acoustic modeling. However, vanilla adapta-
tion #4 is similar to #5 rather than #3.

To solve the problem, we propose Inference Invariant
Batchnorm Adaptation. We adjust weight and bias parame-
ters in batchnorm from � and � to �̂ and �̂ so that inference
results do not change when statistics for normalization are
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guage model (LM) was a 3-gram LM with 50M n-grams.

As for AM domain adaptation, we tuned learning rate and
decay schedule so that vanilla adaptation achieves the best
performance. we applied the fixed learning rate and schedule
for the other experiments.

“JP-1” column of Table 2 shows Character Error Rate
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4. EXPERIMENTS

4.1. Supervised adaptation
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feature map. We inserted ReLU activation after every batch-
norm layer. The VGG was trained with the training data by
using the cross entropy and SGD with manually tuned learn-
ing rate and decay schedule.

The vocabulary comprised of 120K words, and the lan-
guage model (LM) was a 3-gram LM with 50M n-grams.

As for AM domain adaptation, we tuned learning rate and
decay schedule so that vanilla adaptation achieves the best
performance. we applied the fixed learning rate and schedule
for the other experiments.

“JP-1” column of Table 2 shows Character Error Rate

2.2. Vanilla adaptation

(2) is used for any input activations in any domain in infer-
ence. #3 in Fig. 1 shows target domain data of domain adap-
tation data is transformed using the same transformation. It
should be a starting point for domain adaptation.

When domain adaptation starts, on the other hand, mini-
batch statistics of target domain data is used for the normal-
ization instead of µbase and �base. #4 in Fig. 1 shows target
domain data is transformed using (1), where µB and �B are
calculated using activations in a minibatch in the target do-
main data. Because an input feature distribution of a target
domain is usually different from that of an original domain,
statistics of activations in inference µB and �B have consid-
erably different from µbase and �base, respectively. Therefore,
there is mismatch between #3 and #4 in Fig. 1.

3. PROPOSED METHOD

We can make µadaptation and �adaptation using adaptation data by
fixing all the parameters for inference and inputing adaptation
data as #6 in Fig. 1. µadaptation and �adaptation are similar to µB

and �B for a minibatch of target domain data when domain
adaptation starts.

We would like to use #3 in Fig. 1 as initial point of domain
adaptation for acoustic modeling. To this end, we propose In-
ference Invariant Batch Normalization. We adjust weight and
bias parameters in batchnorm from � and � to �̂ and �̂ so
that inference results do not change when statistics for nor-
malization are changed from µbase and �base to µadaptation and
�adaptation. Concretely, we define �̂ and �̂ so that they would
satisfy this equation

�
xi � µbasep
�2

base + ✏
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#7 in Fig. 1 shows transformation using this equation. #7 is
exactly same with # 3, which should be a starting point for
domain adaptation.

We call this Inference Invariant Batch Normalization.
When domain adaptation starts after Inference Invariant
Batch Normalization,

batchnormIIBN(xi) = �̂
xi � µBp
�2

B + ✏
+ �̂ (6)

is used for batchnorm in the training mode in stead of (1).
#8 in Fig. 1 represents this transformation. It is similar to #7,

which is exactly same with #3, because statistics in minibatch
in adaptation data is similar to µadaptation and �adaptation. There-
fore, Inference Invariant Batchnorm Adaptation makes it pos-
sible to use #3 as initial point of domain adaptation.

4. EXPERIMENTS

4.1. Supervised adaptation

Our first experiment was supervised domain adaptation of
Japanese narrowband (8k sampling data) model. Training
data for a base model was about 2k hours of various domain
data. Adaptation data for domain adaptation was about 10
hours of a specific call center. We used manual transcripts of
it for supervised adaptation. Test data was about 0.5 hours of
the call center.

We used VGG as Acoustic Model (AM). The VGG op-
erated on blocks of 48 consecutive 40-dimensional logmel
frames augmented with first and second derivatives. The log-
mels were globally variance normalized and mean normalized
per utterance. The VGG had 13 convolutional layers and 5
fully connected layers. Batchnorm layers were inserted af-
ter every convolutional and full connected layers except the
last layer. As for batchnorm layers after convolutional lay-
ers, we applied normalization for each frequency and fea-
ture map. We inserted ReLU activation after every batchnorm
layer. The VGG was trained with the training data by using
the cross entropy and SGD with manually tuned learning rate
and decay schedule. A standard word 3-gram model was used
in common for all evaluation.

As for AM domain adaptation, we tuned learning rate and
decay schedule so that vanilla adaptation achieved the best
performance. We applied the same learning rate and schedule
tuned for the vanilla adaptation for the other experiments.

Table 1 shows the experimental results. “JP-1” column of
Table 1 shows Character Error Rate (CER) of various adap-
tation methods. We used CER as evaluation metric because
Japanese has ambiguity for word segmentation. Vanilla adap-
tation outperform the baseline, but its gain was relatively
small. If we freeze parameters of batchnorm during adap-
tation, additional gain was obtained. We consider that this
gain comes from that the mismatch between inference and
training when domain adaptation starts is removed. However,
it also removed good effect of batchnorm. Using Inference
Invariant Batch Normalization brought further gain compared
to batchnorm freezing. We consider that the gain is comes
from reducing the mismatch and leveraging good effect of
batchnorm. Although AdaBN were shown to have good ef-
fect for domain adaptation for some image classification task
[9], we found it is worse than baseline for this task.

4.2. Analysis

Fig. 2 is curves of negative log likelihood of validation data
during adaptation. The left edges of vanilla adaptation and

2.2. Vanilla adaptation

(2) is used for any input activations in any domain in infer-
ence. #3 in Fig. 1 shows target domain data of domain adap-
tation data is transformed using the same transformation. It
should be a starting point for domain adaptation.

When domain adaptation starts, on the other hand, mini-
batch statistics of target domain data is used for the normal-
ization instead of µbase and �base. #4 in Fig. 1 shows target
domain data is transformed using (1), where µB and �B are
calculated using activations in a minibatch in the target do-
main data. Because an input feature distribution of a target
domain is usually different from that of an original domain,
statistics of activations in inference µB and �B have consid-
erably different from µbase and �base, respectively. Therefore,
there is mismatch between #3 and #4 in Fig. 1.

3. PROPOSED METHOD

We can make µadaptation and �adaptation using adaptation data by
fixing all the parameters for inference and inputing adaptation
data as #6 in Fig. 1. µadaptation and �adaptation are similar to µB

and �B for a minibatch of target domain data when domain
adaptation starts.

We would like to use #3 in Fig. 1 as initial point of domain
adaptation for acoustic modeling. To this end, we propose In-
ference Invariant Batch Normalization. We adjust weight and
bias parameters in batchnorm from � and � to �̂ and �̂ so
that inference results do not change when statistics for nor-
malization are changed from µbase and �base to µadaptation and
�adaptation. Concretely, we define �̂ and �̂ so that they would
satisfy this equation

�
xi � µbasep
�2

base + ✏
+ � = �̂

xi � µadaptationq
�̂2

adaptation + ✏
+ �̂. (3)

From this, we can calculate closed form of �̂ and �̂ as

�̂ = �

q
�2

adaptation + ✏
p
�2

base + ✏
, (4)

�̂ = �
µadaptation � µbasep

�2
base + ✏

+ �. (5)

#7 in Fig. 1 shows transformation using this equation. #7 is
exactly same with # 3, which should be a starting point for
domain adaptation.

We call this Inference Invariant Batch Normalization.
When domain adaptation starts after Inference Invariant
Batch Normalization,

batchnormIIBN(xi) = �̂
xi � µBp
�2

B + ✏
+ �̂ (6)

is used for batchnorm in the training mode in stead of (1).
#8 in Fig. 1 represents this transformation. It is similar to #7,

which is exactly same with #3, because statistics in minibatch
in adaptation data is similar to µadaptation and �adaptation. There-
fore, Inference Invariant Batchnorm Adaptation makes it pos-
sible to use #3 as initial point of domain adaptation.

4. EXPERIMENTS

4.1. Supervised adaptation

Our first experiment was supervised domain adaptation of
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data. Adaptation data for domain adaptation was about 10
hours of a specific call center. We used manual transcripts of
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frames augmented with first and second derivatives. The log-
mels were globally variance normalized and mean normalized
per utterance. The VGG had 13 convolutional layers and 5
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ture map. We inserted ReLU activation after every batchnorm
layer. The VGG was trained with the training data by using
the cross entropy and SGD with manually tuned learning rate
and decay schedule. A standard word 3-gram model was used
in common for all evaluation.
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decay schedule so that vanilla adaptation achieved the best
performance. We applied the same learning rate and schedule
tuned for the vanilla adaptation for the other experiments.
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tation methods. We used CER as evaluation metric because
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tation outperform the baseline, but its gain was relatively
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tation, additional gain was obtained. We consider that this
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Invariant Batch Normalization brought further gain compared
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[9], we found it is worse than baseline for this task.

4.2. Analysis

Fig. 2 is curves of negative log likelihood of validation data
during adaptation. The left edges of vanilla adaptation and

2.2. Vanilla adaptation

(2) is used for any input activations in any domain in infer-
ence. #3 in Fig. 1 shows target domain data of domain adap-
tation data is transformed using the same transformation. It
should be a starting point for domain adaptation.

When domain adaptation starts, on the other hand, mini-
batch statistics of target domain data is used for the normal-
ization instead of µbase and �base. #4 in Fig. 1 shows target
domain data is transformed using (1), where µB and �B are
calculated using activations in a minibatch in the target do-
main data. Because an input feature distribution of a target
domain is usually different from that of an original domain,
statistics of activations in inference µB and �B have consid-
erably different from µbase and �base, respectively. Therefore,
there is mismatch between #3 and #4 in Fig. 1.

3. PROPOSED METHOD

We can make µadaptation and �adaptation using adaptation data by
fixing all the parameters for inference and inputing adaptation
data as #6 in Fig. 1. µadaptation and �adaptation are similar to µB

and �B for a minibatch of target domain data when domain
adaptation starts.

We would like to use #3 in Fig. 1 as initial point of domain
adaptation for acoustic modeling. To this end, we propose In-
ference Invariant Batch Normalization. We adjust weight and
bias parameters in batchnorm from � and � to �̂ and �̂ so
that inference results do not change when statistics for nor-
malization are changed from µbase and �base to µadaptation and
�adaptation. Concretely, we define �̂ and �̂ so that they would
satisfy this equation

�
xi � µbasep
�2

base + ✏
+ � = �̂

xi � µadaptationq
�̂2

adaptation + ✏
+ �̂. (3)

From this, we can calculate closed form of �̂ and �̂ as

�̂ = �

q
�2

adaptation + ✏
p

�2
base + ✏

, (4)

�̂ = �
µadaptation � µbasep

�2
base + ✏

+ �. (5)

#7 in Fig. 1 shows transformation using this equation. #7 is
exactly same with # 3, which should be a starting point for
domain adaptation.

We call this Inference Invariant Batch Normalization.
When domain adaptation starts after Inference Invariant
Batch Normalization,

batchnormIIBN(xi) = �̂
xi � µBp
�2

B + ✏
+ �̂ (6)

is used for batchnorm in the training mode in stead of (1).
#8 in Fig. 1 represents this transformation. It is similar to #7,

which is exactly same with #3, because statistics in minibatch
in adaptation data is similar to µadaptation and �adaptation. There-
fore, Inference Invariant Batchnorm Adaptation makes it pos-
sible to use #3 as initial point of domain adaptation.

4. EXPERIMENTS

4.1. Supervised adaptation

Our first experiment was supervised domain adaptation of
Japanese narrowband (8k sampling data) model. Training
data for a base model was about 2k hours of various domain
data. Adaptation data for domain adaptation was about 10
hours of a specific call center. We used manual transcripts of
it for supervised adaptation. Test data was about 0.5 hours of
the call center.

We used VGG as Acoustic Model (AM). The VGG op-
erated on blocks of 48 consecutive 40-dimensional logmel
frames augmented with first and second derivatives. The log-
mels were globally variance normalized and mean normalized
per utterance. The VGG had 13 convolutional layers and 5
fully connected layers. Batchnorm layers were inserted af-
ter every convolutional and full connected layers except the
last layer. As for batchnorm layers after convolutional lay-
ers, we applied normalization for each frequency and fea-
ture map. We inserted ReLU activation after every batchnorm
layer. The VGG was trained with the training data by using
the cross entropy and SGD with manually tuned learning rate
and decay schedule. A standard word 3-gram model was used
in common for all evaluation.

As for AM domain adaptation, we tuned learning rate and
decay schedule so that vanilla adaptation achieved the best
performance. We applied the same learning rate and schedule
tuned for the vanilla adaptation for the other experiments.

Table 1 shows the experimental results. “JP-1” column of
Table 1 shows Character Error Rate (CER) of various adap-
tation methods. We used CER as evaluation metric because
Japanese has ambiguity for word segmentation. Vanilla adap-
tation outperform the baseline, but its gain was relatively
small. If we freeze parameters of batchnorm during adap-
tation, additional gain was obtained. We consider that this
gain comes from that the mismatch between inference and
training when domain adaptation starts is removed. However,
it also removed good effect of batchnorm. Using Inference
Invariant Batch Normalization brought further gain compared
to batchnorm freezing. We consider that the gain is comes
from reducing the mismatch and leveraging good effect of
batchnorm. Although AdaBN were shown to have good ef-
fect for domain adaptation for some image classification task
[9], we found it is worse than baseline for this task.

4.2. Analysis

Fig. 2 is curves of negative log likelihood of validation data
during adaptation. The left edges of vanilla adaptation and

layer

Normalization	 with	averaged	stats	of	training	data Normalization	 with	averaged	stats	of	adaptation	data

Weight	and	bias	of	batchnorm

Original		domain	data Target	domain	data

#1 #2 #3 #4 #5

Adjusted	weight	and	bias

#6

Minibatch normalizationMinibatch normalization Minibatch normalization

#7
Similar Similar Similar

Exactly	same

Mismatch

Fig. 1. Variants of batchnorm and its relationships

2. RELATED WORKS

2.1. Batch normalization

Batchnorm in the training mode normalize input activations
in a minibatch {x1...m} using mean µB and variance �2

B of
minibatch as follows.

µB =
1

m

mX

i=1

xi, (1)

�2
B =

1

m

mX

i=1

(xi � µB)2, (2)

batchnormtraining(xi) = �
xi � µBp
�2

B + ✏
+ �, (3)

where � and � are parameters to be trained, ✏ is a small value,
say 0.0001, to stabilize the transformation. #1 in Fig. 1 repre-
sents this transformation. Depending on the input activations
in minibatch, µB and �2

B are changed and its transformation
transformation are changed.

In the inference mode, batchnorm do not use µB and �B .
Instead of them, running mean and variance of training data
µtraining and �training are used as follows.

batchnorminference(xi) = �
xi � µtrainingq
�2

training + ✏
+ �. (4)

µtraining and �training are estimated as running mean and vari-
ance using training data. #2 in Fig. 1 represents this transfor-
mation. Input activations do not affect this transformation.

If the mini-batch size m is large enough and input fea-
ture distribution is i.i.d., µB and �B is similar to µtraining and
�training, respectively. Therefore, #1 and #2 in Fig. 1 has simi-
lar inference results.

2.2. Domain adaptation of batchnorm

(4) is used for any input activations in any domain in infer-
ence. Even for different domain data, the same transforma-

tion is used. #3 in Fig. 1 shows target domain data of domain
adaptation data is transformed using (4).

When domain adaptation starts, on the other hand, mini-
batch statistics of target domain data is used for the normal-
ization. #4 in Fig. 1 shows target domain data is transformed
using (3), where µB and �B are calculated using activations
in a minibatch in the target domain data.

Because an input feature distribution of a target domain is
usually different from that of an original domain, statistics of
activations in inference µB and �B have considerably differ-
ent from µtraining and �training, respectively. Therefore, there is
mismatch between #3 and #4 in Fig. 1.

We can make µadaptation and �adaptation using adaptation data
by the same way to make µtraining and �training but different
data. µadaptation and �adaptation are similar to µB and �B for a
minibatch of target domain data. With these statistics, we can
modify the batchnorm in the inference mode as

batchnorm0
inference(xi) = �

xi � µadaptationq
�2

adaptation + ✏
+ �. (5)

#5 in Fig. 1 represents this transformation. Because µB and
�B is similar to µadaptation and �adaptation when domain adapta-
tion starts, #4 and #5 in Fig. 1 has similar inference results.

[3] proposed that using #5 instead of #3 in Fig. 1 as Ad-
aBN. They showed that AdaBN outperformed #3 in several
image classification tasks. However, we empirically found
that AdaBN do not improve performance for several acoustic
model adaptation tasks.

3. PROPOSED METHOD
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aBN. They showed that AdaBN outperformed #3 in several
image classification tasks. However, we empirically found
that AdaBN do not improve performance for several acoustic
model adaptation tasks.
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We would like to use #3 in Fig. 1 as initial point of domain
adaptation for acoustic modeling. However, vanilla adapta-
tion #4 is similar to #5 rather than #3.
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Batchnorm Adaptation. We adjust weight and bias parame-
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2.2. Vanilla adaptation

(2) is used for any input activations in any domain in infer-
ence. #3 in Fig. 1 shows target domain data of domain adap-
tation data is transformed using the same transformation. It
should be a starting point for domain adaptation.

When domain adaptation starts, on the other hand, mini-
batch statistics of target domain data is used for the normal-
ization instead of µbase and �base. #4 in Fig. 1 shows target
domain data is transformed using (1), where µB and �B are
calculated using activations in a minibatch in the target do-
main data. Because an input feature distribution of a target
domain is usually different from that of an original domain,
statistics of activations in inference µB and �B have consid-
erably different from µbase and �base, respectively. Therefore,
there is mismatch between #3 and #4 in Fig. 1.

3. PROPOSED METHOD

We can make µadaptation and �adaptation using adaptation data by
fixing all the parameters for inference and inputing adaptation
data as #6 in Fig. 1. µadaptation and �adaptation are similar to µB

and �B for a minibatch of target domain data when domain
adaptation starts.

We would like to use #3 in Fig. 1 as initial point of domain
adaptation for acoustic modeling. To this end, we propose In-
ference Invariant Batch Normalization. We adjust weight and
bias parameters in batchnorm from � and � to �̂ and �̂ so
that inference results do not change when statistics for nor-
malization are changed from µbase and �base to µadaptation and
�adaptation. Concretely, we define �̂ and �̂ so that they would
satisfy this equation

�
xi � µbasep
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base + ✏
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#7 in Fig. 1 shows transformation using this equation. #7 is
exactly same with # 3, which should be a starting point for
domain adaptation.

We call this Inference Invariant Batch Normalization.
When domain adaptation starts after Inference Invariant
Batch Normalization,

batchnormIIBN(xi) = �̂
xi � µBp
�2

B + ✏
+ �̂ (6)

is used for batchnorm in the training mode in stead of (1).
#8 in Fig. 1 represents this transformation. It is similar to #7,

which is exactly same with #3, because statistics in minibatch
in adaptation data is similar to µadaptation and �adaptation. There-
fore, Inference Invariant Batchnorm Adaptation makes it pos-
sible to use #3 as initial point of domain adaptation.

4. EXPERIMENTS

4.1. Supervised adaptation

Our first experiment was supervised domain adaptation of
Japanese narrowband (8k sampling data) model. Training
data for a base model was about 2k hours of various domain
data. Adaptation data for domain adaptation was about 10
hours of a specific call center. We used manual transcripts of
it for supervised adaptation. Test data was about 0.5 hours of
the call center.

We used VGG as Acoustic Model (AM). The VGG op-
erated on blocks of 48 consecutive 40-dimensional logmel
frames augmented with first and second derivatives. The log-
mels were globally variance normalized and mean normalized
per utterance. The VGG had 13 convolutional layers and 5
fully connected layers. Batchnorm layers were inserted af-
ter every convolutional and full connected layers except the
last layer. As for batchnorm layers after convolutional lay-
ers, we applied normalization for each frequency and fea-
ture map. We inserted ReLU activation after every batchnorm
layer. The VGG was trained with the training data by using
the cross entropy and SGD with manually tuned learning rate
and decay schedule. A standard word 3-gram model was used
in common for all evaluation.

As for AM domain adaptation, we tuned learning rate and
decay schedule so that vanilla adaptation achieved the best
performance. We applied the same learning rate and schedule
tuned for the vanilla adaptation for the other experiments.

Table 1 shows the experimental results. “JP-1” column of
Table 1 shows Character Error Rate (CER) of various adap-
tation methods. We used CER as evaluation metric because
Japanese has ambiguity for word segmentation. Vanilla adap-
tation outperform the baseline, but its gain was relatively
small. If we freeze parameters of batchnorm during adap-
tation, additional gain was obtained. We consider that this
gain comes from that the mismatch between inference and
training when domain adaptation starts is removed. However,
it also removed good effect of batchnorm. Using Inference
Invariant Batch Normalization brought further gain compared
to batchnorm freezing. We consider that the gain is comes
from reducing the mismatch and leveraging good effect of
batchnorm. Although AdaBN were shown to have good ef-
fect for domain adaptation for some image classification task
[9], we found it is worse than baseline for this task.

4.2. Analysis

Fig. 2 is curves of negative log likelihood of validation data
during adaptation. The left edges of vanilla adaptation and
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Figure 1: Difference between transformations of batch normalization layer in vanilla adaptation and proposed method. #1 and #2
represent typical steps for the training of a base model and evaluation. #3 should be a initial point for domain adaptation. #4 and
#5 represent steps for adaptation and evaluation in a target domain. When vanilla adaptation starts, there is a mismatch because the
mean and variance of the mini-batch in #4 are considerably different from µbase and σbase. With these mismatches #3 is clearly not an
appropriate starting point for vanilla adaptation. Our proposed method first accumulates µadaptation and σadaptation by fixing the other
parameters as in #6. Then, it calculates γ̂ and β̂ so that #7 and #3 has the same inference result. Our proposed method uses #7, which
has an equivalent inference result to #3, as an initial point for domain adaptation. #8 and #9 represent typical steps for adaptation
and evaluation in a target domain. Unlike vanilla adaptation, there is no mismatch between #7 and #8 when adaptation starts. Our
proposed method can hence properly leverage #3 as a starting point for domain adaptation.

In the inference mode, batchnorm does not use µB and σB .
Instead, the averaged mean and variance of the training data of
a base model µbase and σbase are used as follows.

batchnorminference(xi) = γ
xi − µbase√
σ2

base + ε
+ β. (2)

µbase and σbase are often estimated as the final value of the run-
ning mean and variance during training. #2 in Fig. 1 represents
this transformation.

If the mini-batch size m is large enough and the input fea-
ture distribution is i.i.d., µB and σB are similar to µbase and
σbase, respectively [13]. Therefore, after training has finished,
#1 and #2, as in Fig. 1, both have matched inference results.

Equation (2) is used for inference with any test data for var-
ious input activations. As in #3 of Fig. 1, when the test data
now comes from a domain with different characteristics than
the train data, the new test data is still transformed using the
original transformations estimated in a different data setting.
This clearly introduces mismatches that result in performance
degradation. If however an inference mode adapation (vanilla
adaptation) were to be done, to obtain #5 as shown in Fig. 1, #3
would be a good initial point for domain adaptation.

When domain adaptation using domain specific data is em-
ployed to update the acoustic model, the mini-batch statistics
of the target domain data are used for normalization, instead of
µbase and σbase. In #4 of Fig. 1, the target domain data is trans-
formed using (1), where µB and σB are calculated using acti-
vations from mini-batches of target domain data. Because the

input feature distribution of a target domain is usually different
from that of the original domain, the statistics of activations in
inference µB and σB are considerably different from µbase and
σbase, respectively. In other words, there is a mismatch between
#3 and #4 in Fig. 1.

3. Proposed Methods
3.1. Batchnorm freezing

A simple way to remove the mismatch is freezing the parame-
ters of batchnorm as γ, β, µbase, σ

2
base. In this case, (2) is used

both for inference and training. Since (2) is an affine trans-
formation of activations, it can be folded down into previous
affine transformations of the neural network. The resulting neu-
ral network will however now not have any batchnorm layer.
Batchnorm freezing can therefore be viewed as a technique that
removes batchnorm layers without changing inference results.
This in turn removes mismatches but nullifies the benefits of
batchnorm.

3.2. Inference-invariant transformation of batchnorm

We propose inference-invariant transformation (IIT) of batch-
norm to remove the mismatch without changing inference re-
sults and freezing batchnorm layers. IIT enables the use of #3
in Fig. 1 as an initial point of domain adaptation for acoustic
modeling.

To perform the propose inference-invariant transform, we
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begin by estimating µadaptation and σadaptation of the adaptation data
in #6 of Fig. 1. These statistics are estimated off the adaptation
data, similar to the estimation of µbase and σbase, after fixing all
the parameters for inference. µadaptation and σadaptation are similar
to µB and σB for a mini-batch of the target domain data when
domain adaptation starts.

IIT then adjusts the weight and bias parameters in batch-
norm from γ and β to γ̂ and β̂ so that the inference results do
not change when statistics for normalization are changed from
µbase and σbase to µadaptation and σadaptation. Specifically, we de-
fined γ̂ and β̂ so that they satisfy the follow equality

γ
xi − µbase√
σ2

base + ε
+ β = γ̂

xi − µadaptation√
σ̂2

adaptation + ε
+ β̂. (3)

The closed forms of γ̂ and β̂ are then calculated as

γ̂ = γ

√
σ2

adaptation + ε
√
σ2

base + ε
, (4)

β̂ = γ
µadaptation − µbase√

σ2
base + ε

+ β. (5)

#7 in Fig. 1 shows a transformation using this equation. #7 is the
similar to #3 and can be an initial point for domain adaptation.

We call this method inference-invariant transformation
(IIT). When domain adaptation starts after IIT,

batchnormIIT(xi) = γ̂
xi − µB√
σ2
B + ε

+ β̂ (6)

is used for batchnorm in the training mode instead of (1). #8
in Fig. 1 represents this transformation. It matches #7, which is
the same as #3, because the statistics of the mini-batch in the
adaptation data are similar to µadaptation and σadaptation. Therefore,
IIT makes it possible to use #3 as the initial point of domain
adaptation.

4. Related Works
In batch re-normalization [13], statistics of the entire training
data are leveraged to estimate batchnorm transformations in the
training mode. Although this method provides good gains when
the mini-batch sizes is small or non-i.i.d, it is less effective when
an input feature distribution is changed, as is in the case in do-
main adaptation tasks.

In a similar technique called AdaBN [14], the averaged nor-
malization used in the inference mode is replaced using statis-
tics estimated off the adaptation data. AdaBN changes the infer-
ence results but does not require an adaptation step using back-
propagation after the technique has been applied. In [10], Ad-
aBN has been shown to produce good results for domain adap-
tation of image classification tasks. IIT on the other hand, does
not change the inference results but assumes that adaptation us-
ing backpropagation is performed after it has been applied.

5. Experiments
To evaluate the usefulness of our proposed technique, we per-
formed domain adaptation experiments in both supervised and
unsupervised settings.

5.1. Supervised adaptation

For our first evaluation of the proposed technique in a su-
pervised setting we used a narrowband (8kHz sampling rate)
Japanese neural network based acoustic model trained on about
2K hours of narrowband speech from various sources. The
adaptation data for this task was about 10 hours of manually
transcribed telephone conversations from a specific call center
collected outside of the training set. 0.5 hours of conversations
from the same adaptation data setting was used as a test set for
this experiment.

The acoustic model used in our experiments was a VGG
based deep neural network operating on blocks of 48 consec-
utive 40-dimensional log-mel frames augmented with first and
second derivatives. The logmels were globally variance nor-
malized and mean normalized per utterance. The VGG had 13
convolutional layers and 5 fully connected layers. Batchnorm
layers were inserted after every convolutional and fully con-
nected layers except the last layer. We applied normalization
for each frequency and feature map for batchnorm layers fol-
lowing convolutional layers. We inserted ReLU activation after
every batchnorm layer. The VGG was trained with the training
data by using the cross entropy and stochastic gradient descent
with a manually tuned learning rate and decay schedule. A stan-
dard word n-gram model was used in common for all evaluation
as the language model.

We tuned the learning rate and decay schedule so that
vanilla adaptation achieved the best performance for AM do-
main adaptation. We applied the same learning rate and sched-
ule that was tuned for the vanilla adaptation in the other experi-
ments.

Table 1 shows the experimental results. “JP-1” column of
Table 1 shows the character error rate (CER) of various adap-
tation methods. We used the CER as the evaluation metric be-
cause Japanese has ambiguous for word segmentation. Vanilla
adaptation outperforms the baseline, but its gain was relatively
small. When we froze the parameters of the batchnorm dur-
ing adaptation, additional gain was obtained. We assumed that
this gain was obtained because the mismatch between inference
and training when the domain adaptation started was removed.
However, it also removed the good effects of batchnorm. Using
IIT enabled further gain compared to batchnorm to batchnorm
freezing. We assumed that the gain was obtained by reducing
the mismatch and leveraging batchnorm’s good effects. Overall
our proposed technique provides up to 5% relative improvement
over the baseline system performance in this setting. Although
AdaBN was shown to have a good effect for domain adaptation
for some image classification tasks [14], we found it was worse
than the baseline for this task.

5.2. Analysis

Fig. 2 shows the negative log likelihood of the validation data
during supervised adaptation. The left most data points for both
vanila adaptation and the proposed method are the same be-
cause IIT does not affect the inference mode. When adaptation
started, vanilla adaptation suddenly increased in errors. We as-
sumed that this was caused by the mismatch between inference
and training. However, when IIT was applied, the loss was con-
sistently reduced.

For quantitative evaluation of the mismatch between infer-
ence and training of batchnorm, we calculated the Kullback-
Leibler (KL) divergence between distributions of batchnorm
outputs in the inference mode and the training mode. Table 2
shows averages of the KL divergence between #3 – #4, #7 – #8
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Table 1: Results of AM domain adaptation with various methods, language, and data. Numbers in parenthesis mean WERs of interme-
diate models using first 10K training samples.

Method JP-1 US-1 US-2 US-3 SWB-dev04f
Baseline (#3 in Fig. 1) 42.2 26.4 19.5 19.9 14.7
Vanilla adaptation (#5 in Fig. 1) 41.5 26.3 18.7 21.0 (15.1) 14.0
Batchnorm freezing + adaptation 40.9 26.0 18.9 20.2 (14.2) 14.0
IIT + adaptation (#9 in Fig. 1) 40.1 26.0 18.8 19.9 (14.2) 14.0
AdaBN [14] 56.1 27.6 21.1 30.1 17.1
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Figure 2: Negative log likelihood curves of validation data. IIT
is an acronym of inference invariant transformation. Vanilla
adaptation and IIT + adaptation correspond to #4 and #8 in
Fig. 1, respectively.

Table 2: Averages of KL divergence between distributions of
batchnorm outputs.

#3 – #4 #7 – #8
First batchnorm 3.63 0.13
Middle (5th) batchnorm 26.90 0.35
Last (17th) batchnorm 15.46 0.13

in Fig. 1 of the first, middle (5th), and last (17th) batchnorm lay-
ers. The parameters of the preceding layer and batch normaliza-
tion of #4 and #8 are frozen. As anticipated, the KL divergence
between #3 and #4 is larger than that of between #7 and #8 for
all batchnorm layers’ output.

5.3. Unsupervised adaptation

To evaluate our proposed method’s performance in an unsuper-
vised setting also we conducted a second set of experiments
using an English narrow band model. The training data for the
base model was 2K hours of Switchboard and Callhome data
and 500 hours of in-house call center data. We evaluate the
performance of this model against three test sets, from three
specific call centers. These 1 hour test sets were also used as
unsupervised adaptation data. The language model in these ex-
periments was a standard 4-gram. All other experimental set-
tings are similar to those described in Section 5.1.

“US-1,2,3” columns in Table 1 show the word error rate
(WER) of various test sets and various adaptation methods.
As for US-1, it had a similar tendency as that of JP-1, except
that batchnorm freezing performed comparably to our proposed
method. For US-2, vanilla adaptation had the best performance,
but the difference between its performance and that of our pro-
posed method was small. For US-3, vanilla adaptation degraded
performance from the baseline. However, our proposed method
did not hurt the WER. In this setting too the proposed technique

performs well and provides up to 4% relative improvement over
the baseline system.

5.4. Unsupervised adaptation without significant domain
mismatch

To further understand the usefulness of our proposed technique
we conducted an unsupervised experiment with test data from a
domain without any considerable mismatch to the training data.
With sufficient amount of training data and minimal mismatch
between train and test statistics, we hypothesize our proposed
technique will only perform at par with other techniques.

The training data for the base model was 2K hours of
Switchboard and Callhome data. We evaluated the performance
of this model against downsampled version of the DARPA
EARS dev04f set. The 2.2 hour dev04f set was also used as
unsupervised adaptation data. All other experimental settings
are similar to those described in Section 5.3. The SWB-dev04f
column in Table 1 shows the WER of various adaptation meth-
ods. If we compare the performance of intermediate models
using just the first 10K training samples, batchnorm freezing
and IIT have better results than vanilla adaptation - see results
in parenthesis. However, vanilla adaptation, batchnorm freez-
ing, and the proposed method all have equal WERs when we
run more iterations using all of the data. This experiment con-
firms our hypothesis that when the mismatch is minimal, with
sufficient amount of adaptation data, vanilla adaptation can per-
form as well as our proposed technique. We observe up to 5%
relative improvement over the baseline system performance in
this setting as well.

In both unsupervised settings (experiment sets 2 and 3) we
observe that the proposed technique has gains over the baseline
system but the improvements are not as significant as in the su-
pervised setting (experiment set 1). We also observe that the
amount of adaptation data also plays an important role in the
final performance of systems adapted in unsupervised settings.

6. Conclusion
In this paper we have proposed an adaptation strategy based
on batchnorm, a popular technique to improve the training of
deep neural networks. The adaptation strategy is an inference-
invariant transformation of batchnorm and reduces the mis-
match between inference and training when the domain adap-
tation strategy starts without changing the inference results.
We have demonstrated the usefulness of the proposed approach
in both supervised and unsupervised settings on various lan-
guages. We observe up to 5% relative improvement over the
baseline system performance in all these various settings. In
future work, we will conduct analysis to determine when our
proposed method performs better than vanilla adaptation. We
also plan to apply our proposed methods to the other transfer
learning and domain adaptation tasks such as image classifica-
tion.
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