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Abstract

This paper presents an Automatic Speech Recognition (ASR)
system, in the Gujarati language, developed for Low Resource
Speech Recognition Challenge for Indian Languages in INTER-
SPEECH 2018. For front-end, Amplitude Modulation (AM)
features are extracted using the standard and data-driven audi-
tory filterbanks. Recurrent Neural Network Language Models
(RNNLM) are used for this task. There is a relative improve-
ment of 36.18 % and 40.95 % in perplexity on the test and
blind test sets, respectively, compared to 3-gram LM. Time-
Delay Neural Network (TDNN) and TDNN-Long Short-Term
Memory (LSTM) models are employed for acoustic modeling.
The statistical significance of proposed approaches is justified
using a bootstrap-based % Probability of Improvement (POI)
measure. RNNLM rescoring with 3-gram LM gave an abso-
lute reduction of 0.69-1.29 % in Word Error Rate (WER) for
various feature sets. AM features extracted using the gamma-
tone filterbank (AM-GTFB) performed well on the blind test set
compared to the FBANK baseline (POI>70 %). The combina-
tion of ASR systems further increased the performance with an
absolute reduction of 1.89 and 2.24 % in WER for test and blind
test sets, respectively (100 % POI).

Index Terms: Gujarati language, RNNLM, amplitude modula-
tion, TDNN, TDNN-LSTM.

1. Introduction

Speech and language technologies play a key role in a mul-
tilingual country, such as India. India has about 1652 na-
tive languages/dialects (even though there are only 22 offi-
cial languages). Most of these official languages are still low-
resourced. The Government of India is maintaining several re-
sources in a web portal to increase the research and develop-
ment of speech and language technologies [1]. There have been
some efforts for the development of Indian language speech
database for the Automatic Speech recognition (ASR) [2] and
BABEL program [3]. Three low resource Indian languages,
namely, Assamese, Bengali, and Tamil were included in the
BABEL program [4]. A language is considered as low resource,
when there is less or no availability of speech, text, phonetic
dictionary, or transcribed data. To motivate the research in such
languages, first of its kind ASR challenge for low resource In-
dian languages has been organized as a special session during
the INTERSPEECH 2018. This challenge focuses on three In-
dian languages, namely, Gujarati, Telugu and Tamil. Gujarati
is one of the official Indian languages which is still in the low
resource category. Our earlier works in ASR for the Gujarati
language include development of the phonetic engine for ASR
[5] and ASR in the agricultural-domain [6] funded by MeitY,

Govt. of India. In this paper, we have presented our Gujarati
ASR system which is a part of the ASR Challenge.

Recently, there is a surge in the use of Recurrent Neural
Network-based Language Model (RNNLM) for the ASR task.
The detailed survey of RNNLM for LM is recently presented in
[7]. Generally, RNNLM is used as a rescoring technique with
n-gram LM [8]. There are various approaches for efficient train-
ing and testing using RNNLM, one of which we followed is pro-
posed in [9]. We have also explored feature representations ob-
tained from the multiband demodulation analysis (MDA) tech-
nique [10]. The AM and FM are two important physical aspects
of communication sounds, such as speech signal. The AM-FM
model of the speech describes dynamic changes in the envelope
(AM) and carrier frequency (FM) [11]. For speech perception,
the temporal envelope (AM) obtained from the subband filter-
ing is essential as observed in psychoacoustics [12], [13] and
the neurophysiological study in [14]. It was observed that AM
is sufficient for speech recognition in clean conditions while FM
does not provide any additional cues [15]. Since the challenge
database has the clean conditions, we prefer only AM-based
feature representation.

The objective of this paper is to show the effectiveness of
RNNLM over 3-gram and AM-based spectral features for the
ASR in Gujarati language. The RNNLM rescoring is performed
with 3-gram LM. Two standard auditory filterbanks (Gabor and
gammatone) and one data-driven auditory filterbank using Con-
volutional Restricted Boltzmann Machine (ConvRBM) [16] are
used for the AM spectral feature extraction. The system com-
bination of the proposed features along with RNNLM further
improved the performance.

2. Amplitude Modulation-based Features

The AM signals are extracted from the auditory filterbanks us-
ing the Energy Separation Algorithm (ESA) [10]. The ESA al-
gorithm estimates the instantaneous amplitude and frequency
using the Teager Energy Operator (TEO) applied on the sub-
band filtered signals [17]. The discrete version of the TEO (de-
fined as U p{-}) applied on the i*" subband s;[n] of the filter-
bank is defined as follows [10]:

Up{si[n]} == si[n] — si[n — 1]s;[n + 1]. (1)

The discrete ESA-2 algorithm is used to extract the AM (i.e.,
envelope) a;[n] for the i*" subband as follows [18]:

a; [n] ~ Z\IJD{SZ[n}} .
V(s 1 —sin -1}

We have considered three type of filterbanks for our exper-
iments. The two standard auditory filterbanks are gammatone
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and Gabor filterbank. The third one is obtained from the au-
ditory filterbank learning using ConvRBM [16]. It is shown
earlier that data-driven ConvRBM filterbank contains comple-
mentary information compared to the standard filterbank [16],
[19]. The block diagram for the AM feature extraction is shown
in Figure 1. The short-time spectral features are obtained us-
ing framing with a Hamming window of squared envelopes fol-
lowed by a logarithmic compression. The squaring and loga-
rithm operation approximates the inner and outer hair cell non-
linearities, respectively in the cochlea [20].

Speech 5 Subband ESA [ aMm
Signal Filtering

AM

Spectral <—| Log () [€— Windowing |«— (-)?
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Figure 1: Block diagram of AM spectral feature extraction.

3. Neural Networks for Language and
Acoustic Modeling

3.1. Recurrent Neural Networks for Language Modeling

Recurrent Neural Network Language Model (RNNLM) allows
the information to persist by keeping loops in them [8]. It uses
the previous information, h; = {w;—1,..., w1} to predict the
present word w;. Its architecture consists of an input layer
which is given a full history vector h; containing the previ-
ous word w;—1 and vector v;_2 for remaining context. The
hidden layer applies an activation function on the input and
an output layer calculates the normalized RNNLM probabili-
ties Prnim(ws|wi—1,v;—2) using a softmax layer. This pro-
cess is repeated for calculating the probability of the next word
w;+1 with the information being fed from the previous word.
We have used the Gated Recurrent Unit (GRU) as an activation
function in RNNLM [21]. RNNLMs are optimized using back-
propagation through time (BPTT) algorithm with cross-entropy
(CE) the objective function for training. In our study, we used
the noise contrastive estimation (NCE) for the faster RNNLM
training and testing [9]. The combination of RNNLM with n-
gram LM is often done as shown in Figure 2 to preserve the
essence of context and strong generalization. The LM probabil-
ity using a linear interpolation of RNNLM with n-gram LM is
given by [9]:

P(wilhi) = APag(ws|hi) + (1 — X) Pannem (wi ] hi),  (3)

where ) is a weight given to the n-gram LM Pyg ().

3.2. Deep Neural Networks for Acoustic Modeling

In this paper, we consider to use DNN to model the tempo-
ral dynamics in the speech signal. Two such architectures
are Long Short-Term Memory (LSTM)-based RNN and Time-
Delay Neural Networks (TDNN). To model the sequential data,
such as time series, speech, etc., RNN is the first choice. The
most effective and popular sequence models are used in the
practical applications called as gated RNNs which include the
LSTM [22]. The LSTM model is based on introducing self-
loops to produce the paths, where the gradient can flow for a
longer duration. Using the gate controlled by the hidden unit,
the time scale of integration can be changed dynamically [22].
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Another DNN architecture which has been shown to be effective
in modeling the long range temporal dependencies is the TDNN
proposed in [23]. In TDNN, initial layers learn representations
using narrow context whereas higher layers learn wider context
[23]. TDNN is one of the best performing systems tested in the
Kaldi toolkit for various ASR task. We also used TDNN-LSTM
system which is recently proposed to get advantages of both
TDNN and LSTM models [24]. For sequence-discriminative
training of DNN acoustic models, we have used the Lattice-free
Maximum Mutual Information (LF-MMI) in the HMM frame-
work [25]. For better generalization, batch-normalization lay-
ers are added after TDNN layers. The L?-regularization is also
applied in the hidden and output softmax layer. In Figure 2,
the TDNN/TDNN-LSTM block is shown which takes the labels
from the Linear Discriminant Analysis (LDA)-Maximum Like-
lihood Linear Transform (MLLT) system. The decoding of the
test data is performed using 3-gram LM followed by RNNLM

rescoring.
Labels from
LDA-MLLT System|
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RNNLM
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Figure 2: Block diagram for the Gujarati ASR system using neu-
ral networks.

4. Experimental Setup
4.1. Database

The ASR Challenge data is provided by SpeechOcean.com and
Microsoft which is divided into a train and test sets [26]. The
blind test set was released later as a part of the Challenge. The
speech data is sampled at 16 kHz sampling frequency. Table
1 shows statistics of the Gujarati database. We have used the
CMU Indic phoneset for the Gujarati language that consists of
54 phones [27]. The lexicon is provided by the challenge orga-
nizers.

Table 1: Database for the Gujarati ASR system

Train Test Blind Test
Duration (hours) 40 5 5
No. of Utterances 22807 3075 3419

4.2. Feature Representations

For GMM-HMM training, Mel Frequency Cepstral Coefficients
(MFCC) are extracted from the speech signals using a window
length of 25 ms and shift of 10 ms. Delta and double-delta
features are also appended resulting in 39-dimensional (D) fea-
tures. The AM spectral features are extracted with 40 subband



filters using the method shown in Figure 1. AM-based spec-
tral representations are also converted into cepstral features to
train GMM-HMM systems. The notations of AM cepstral fea-
tures for three types of filterbanks are AM-GCC, AM-GTCC,
and AM-ConvRBM-CC for Gabor, gammatone, and ConvRBM
filterbanks, respectively. For DNN training, Mel filterbank
(FBANK) and all the AM spectral features are used. The delta
and double-delta features are appended resulting in 120-D fea-
tures. The ConvRBM-based filterbank (CBANK) is learned
from the training database using the method we proposed in
[16]. Additionally, the annealed dropout is applied as done in
[19] along with Leaky Noisy Rectifier Linear Units (LNReLU).
The notations for AM spectral features for three types of filter-
banks are denoted as AM-GTFB, AM-GFB, and AM-CBANK
for gammatone, Gabor, and ConvRBM filterbanks, respectively.

4.3. GMM-HMM System Building

The GMM-HMM triphone system is built by varying the num-
ber of Gaussians and senones using 39-D cepstral features. The
LDA-MLLT is applied to reduce the dimension and decorrelate
the context-based cepstral features. The 3-gram LM is built us-
ing the SRILM toolkit [28] from the training corpus. The align-
ments obtained from the LDA-MLLT system are used in the
hybrid DNN-HMM training. We used the alignments obtained
using the cepstral-based features for DNN training experiments
with various filterbanks.

4.4. Training of RNNLM and DNN

The RNNLM is built with a training corpus in the Gujarati lan-
guage using the faster-RNNLM toolkit [29]. We have used 20
noise samples in the NCE training for the RNNLM. The num-
ber of hidden neurons and layers are selected based on its per-
formance for the ASR task. The weight X in the Eq. (3) is
chosen to be 0.25, 0.5 and 0.75 for LM rescoring. All the ASR
systems are trained in the Kaldi toolkit [30]. We trained TDNN
with 1024 hidden neurons, 8 hidden layers and [-16,10] network
context. The TDNN-LSTM system has three LSTM layers with
1024 cells, 256 recurrent/non-recurrent projection dimension
and 9 TDNN layers of 1024 neurons. The L?-regularization of
0.01 is applied in the hidden layers of both TDNN and TDNN-
LSTM systems. For softmax output layer, L?-regularization of
0.0025 and 0.004 is used for TDNN and TDNN-LSTM sys-
tems, respectively. The system combination is performed using
the Minimum Bayes Risk (MBR) technique [31] with uniform
weights to all the systems under consideration (i.e., hypothesis-
level combination).

4.5. Evaluation Measures

The performance of an LM is reported in terms of the proba-
bilistic measure called as perplexity (PPL) [32]. Lower the per-
plexity (i.e., higher the probability), better the language model
performance and vice versa. For PPL computation, both the 3-
gram and RNNLM are built from the training corpus and hence
do not incorporate any prior knowledge of test set utterances or
its vocabulary. We have also computed an increment in PPL
to measure the LM performance when the difficulty-level is in-
creased in the blind test set as compared to the test set. The
ASR system performance is evaluated using the % Word Er-
ror Rate (WER). The statistical significance of one ASR system
performing better than the other is assessed using % Probability
of Improvement (POI) measure calculated using the bootstrap
estimation of WER [33].
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5. Experimental Results
5.1. Results of LM Evaluation

The experimental results of the performance of 3-gram and
RNNLM are shown in Table 2. The PPL of the RNNLM is
reported with 700 hidden neurons and two hidden layers (based
on tuning the number of neurons and layers). The PPL of test
and blind test sets are significantly lower for RNNLM. There is
a relative improvement of 36.18 % on the test set and 40.95 %
on the blind test set in the PPL using RNNLM compared to 3-
gram. We have also shown the increased PPL from test to blind
tests for both LMs. It is interesting to note that the PPL incre-
ment of RNNLM is 9.29 that is very low compared to 21.22 in
3-gram LM. Hence, RNNLM performs significantly better than
3-gram LM for our system.

Table 2: Comparison of LMs using perplexity (PPL) as an eval-
uation metric

Language Model Test Blind Test Increased PPL
3-gram 68.02 89.24 21.22
RNNLM (700 x 2) 43.41  52.70 9.29

5.2. Results of GMM-HMM Experiments

The experimental results of the GMM-HMM experiments on
the test set are shown in Table 3. Better results are obtained
using 2800 senones and 22 Gaussians in both the triphone and
LDA-MLLT systems for all the feature sets. Our MFCC base-
line using the LDA-MLLT system has significantly lower %
WER than the challenge baseline (2.56 % absolute reduction).
RNNLM rescoring reduce the % WER for all the cepstral fea-
tures compared to 3-gram LM. The AM-GTCC performed well
compared to all the features with 20.14 % WER.

Table 3: Results of GMM-HMM experiments on the test set us-
ing various feature sets in % WER

Feature Set 3-gram RNNLM

MEFCC (Challenge Baseline) [26] 23.78 -
MFCC (Our Baseline) 21.22 20.35
AM-ConvRBM-CC 22.02 21.19
AM-GCC 21.02 20.45
AM-GTCC 21.03 20.14

5.3. Results of DNN-HMM Experiments

The experimental results of the test set using the DNN-HMM
systems are reported in Table 4 in terms of % WER. In the
case of 3-gram LM and TDNN system, AM-GFB performed
better than FBANK feature set (62.01 % POI). Using TDNN-
LSTM system, the AM-GTFB performed better than FBANK
for both the 3-gram and RNNLM with 80.48 % and 74.65 %
POL respectively. After RNNLM rescoring, the performance
of all the features are increased with an absolute reduction in
a range of 1.05-1.58 % in WER for TDNN and 1-1.09 % for
TDNN-LSTM system. The TDNN-LSTM system gave the im-
provement over TDNN for AM-GFB and AM-GTFB feature
sets when used with RNNLM. However, FBANK with TDNN
and RNNLM rescoring performed better on the test set com-
pared to all the AM spectral features.



Table 4: % WER using various features for the test set

Feature Set TDNN TDNN-LSTM
3-gram RNNLM 3-gram RNNLM

FBANK 16.80 1558 1670  15.68

AM-CBANK 17.14  15.86 17.04  15.97

AM-GFB  16.77 1572 16.75 15.66

AM-GTFB  16.82 15.66  16.61 15.61

The experimental results of the blind test set using the
DNN-HMM systems are reported in Table 5 in terms of %
WER. The AM-GTFB gave lower % WER compared to the
FBANK when used in TDNN system (77.43 % POI). Using
TDNN-LSTM system, the AM-GTFB performed better than the
FBANK with 99.74 % POI using 3-gram and 96.78 % POI us-
ing RNNLM. After RNNLM rescoring, the performance of all
the features are increased with an absolute reduction of around
1 % in WER for both the DNN systems. The best performing
system on the blind test set is the TDNN-LSTM system trained
with the AM-GTFB feature set.

‘We have observed that AM-GTFB performed well for both
the test sets and the results are statistically significant over
FBANK features (POI>70 %). The GTFB is developed to
mimic the human auditory filter shapes and frequency scale
[34]. Hence, the AM features obtained from the GTFB per-
formed better compared to the other feature sets. The auditory
filterbank learning using ConvRBM shows that model learns
30 low-frequency subband filters representing frequency less
than 5 kHz and only 10 subband filters to represent a frequency
above 5 kHz (not shown here). This may be due to either less
number of speakers available in the database so that ConvRBM
is biased towards speaker-specific low pitch frequency (Fp) and
its harmonics (i.e., kFo,k € ZT). Frequency range of pho-
netic sounds in the speech signals of the Gujarati language spans
mostly in lower frequency regions. Hence, AM features from
ConvRBM filterbank, i.e., AM-CBANK did not perform well
even though it is obtained in a data-driven manner. However,
later we observed that it captures significant complementary in-
formation in a system combination framework.

Table 5: % WER using various feature set for blind test set

Feature Set TDNN TDNN-LSTM
3-gram RNNLM 3-gram RNNLM

FBANK 21.81 2070  22.00 20.77

AM-CBANK 2222  21.07 2239 2149

AM-GFB 21.81 20.64 22.10 21.00

AM-GTFB 21.81 20.61 21.70  20.57

5.4. Results of System Combination Experiments

To explore the possible complementary information of vari-
ous feature sets and classifiers, the system combination exper-
iments (denoted as SC) are performed and reported in Table
6. The comparison of our baseline with the challenge base-
line is also shown here. Our FBANK baseline has signifi-
cantly lower WER compared to the challenge baseline. We
have tried various system combinations of feature sets and DNN
systems out of which some of the combinations are shown in
Table 6. We compared the system combination experiments
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with TDNN system trained with FBANK and decoded with
RNNLM rescoring. First, we combined the TDNN systems
(SC-1) trained with various feature sets (used in this study) that
resulted in a relative improvement of 1.93 % for test (99.94
% POI) and 2.46 % for blind test (100 % POI). The combi-
nation of TDNN-LSTM system (SC-2) improves the perfor-
mance on the test set only. The SC-3 combination includes two
TDNN with FBANK and AM-GTFB, and one TDNN-LSTM
with AM-GTFB. The SC-4 combination includes two TDNN
with FBANK and AM-GFB, and two TDNN-LSTM with AM-
GTFB and AM-CBANK. Both SC-3 and SC-4 combinations
slightly improved the performance compared to SC-1 and SC-
2. To get complementary information from ConvRBM-based
filterbanks (CBANK), we have also used filterbank features di-
rectly (without AM processing) in rest of the combinations.
The best performance is obtained with the SC-5 which includes
combination of five ASR systems, (1) TDNN with FBANK, (2)
TDNN with CBANK, (3) TDNN with AM-GFB, (4) TDNN-
LSTM with AM-GTFB, and (5) TDNN-LSTM with CBANK.
Using SC-5 combination strategy, there is a relative reduction
of 4.3 % and 4.98 % over TDNN system trained with FBANK
and decoded with RNNLM rescoring (100 % POI).

Table 6: Results of system various combination in % WER.
Numbers in the round parenthesis indicates % POI calculated
with reference to TDNN-FBANK with RNNLM rescoring.

System Test Blind Test
TDNN-FBANK (Baseline) [26] 19.76 28.99
TDNN-FBANK (Our baseline) 16.80 21.81
TDNN-FBANK with RNNLM 15.58 20.70

SC-1 15.28 (99.94) 20.19 (100)
SC-2 15.25(99.67) 20.28 (96.04)
SC-3 15.02 (100)  19.84 (100)
SC-4 14.98 (100)  19.82 (100)
SC-5 14.91 (100)  19.67 (100)

6. Summary and Conclusions

In this study, we have presented the development of the ASR
system in the Gujarati language as a part of INTERSPEECH
2018 challenge on low resource speech recognition in Indian
languages. The effectiveness of RNN-based language model-
ing over 3-gram LM is shown with perplexity as evaluation
criteria. The AM-based spectral features obtained from stan-
dard filterbanks and representation learning-based approach are
used along with the standard Mel filterbanks. The system com-
bination of various feature sets used in TDNN/TDNN-LSTM
networks shows that proposed approach gives lower % WER.
The statistical significance of the proposed approach is also
presented. Our future work includes further development of
RNNLM. We would also like to explore other high-level au-
ditory features and the acoustical analysis of Gujarati language.
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