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Abstract

Deep convolutional neural network (DCNN) based model has

been successfully applied to acoustic event detection (AED) due

to its efficiency to explore temporal-frequency structure for fea-

ture representations. In most studies, the final representation

either uses a temporal average- or max- pooling algorithm to

accumulate local temporal features as a global representation

for event classification. The temporal pooling algorithm in the

DCNN is based on the assumption that the target label is as-

signed to all temporal locations (average pooling) or to only one

temporal location with a maximum response (max-pooling).

However, the acoustic event labels are holistic descriptions in

a semantic level, it is difficult or even impossible to decide fea-

tures from which temporal locations contribute to the event per-

ception. In this study, we propose a weighted temporal-pooling

algorithm to accumulate local temporal features for AED. The

pooling algorithm integrates global and local attention modules

in a convolutional recurrent neural network to integrate tem-

poral features. Experiments on an AED task were carried out

to evaluate the proposed model. Results showed that with the

global and local attentions, a large gain was obtained.

Index Terms: Deep neural network, acoustic event detection,

global-local attention.

1. Introduction

Acoustic event detection (AED) is to locate the time periods of

homogenous audio event streams and classify them with their

semantic categories. It is an important step for audio content

analysis, audio information retrieval [1, 2, 3, 4, 5, 6], and ap-

plications which integrates with automatic speech recognition

(ASR). Bag of frames (BoF) [7] or bag of acoustic word models

(BoW) [8] have been proposed in which acoustic events are rep-

resented as histogram distributions of basic frame or word fea-

tures. Based on the representation, a Gaussian mixture model

(GMM) or support vector machine (SVM) is applied for classi-

fication. In the BoF/BoW model, there is no consideration of the

temporal structure between frame/word based features. It is bet-

ter to explore the rich temporal-frequency structure in acoustic

signal for classification. Recently, deep model based learning

algorithms have been successfully applied in AED since the al-

gorithms can jointly learn the discriminative feature and classi-

fier in classification tasks. Many deep models with various net-

work architectures have been proposed for AED. The convolu-

tional neural network (CNN) can explore time- and frequency-

shift invariant features for AED [9, 10]. Recurrent neural net-

work (RNN) can extract long temporal-context information in

feature representation for classification. With long-short-term

memory (LSTM) units [11] or gated recurrent units (GRU) [12],

the RNN can be efficiently trained for AED. Models that com-

bines the advantages of CNN and RNN have also been pro-

posed, e.g., convolutional recurrent neural network (CRNN)

model, where the CNN is used to explore frequency-shift invari-

ant feature while the RNN is used to model temporal structure

for classification [13, 14]

Although deep architectures have strong power for feature

extraction and modeling, accurate labels or annotations are re-

quired. If target labels are not accurate or are not properly given,

the trained model may not guarantee a good performance. In

most studies using deep network based models for AED, a tar-

get label is assigned to a chunk (temporal consecutive frames)

with an assumption that event occurs in all chunks of the an-

notated event clip from the starting to ending time stamps, or

only occurs in a specific temporal location. As a consequence,

a temporal average-pooling or max-pooling is applied for tem-

poral feature aggregation. However, the acoustic event annota-

tions are holistic descriptions in a semantic level, it is difficult

or impossible to decide features from which temporal locations

contribute to the event perception. Temporal average-pooling

or max-pooling based feature may increase model confusion in

event classification.

Learning with a rough label without accurate time stamps is

regarded as a weakly supervised learning problem. The problem

was first discussed in [15]. They proposed a multiple instance

learning approach to learn classification models with weakly

labeled data. As study showed that in order to obtain a high

classification accuracy, the detection, i.e., accurate time stamps

of where events present, also should be precisely localized.

This detection-classification problem under deep neural net-

work model framework was studied in [16]. With a clear review

of the problem, they proposed a joint detection-classification

model for audio tagging. Along a similar vein, they continued

to work with attention and localization based deep models for

audio tagging and classification [17, 18]. With a slightly differ-

ent focus, the event localization for audio and music events were

studied in [19, 20]. They proposed a deep architecture based

model for predicting frame-level labels with only clip-level an-

notations [19]. Later, they proposed to use a learnable event-

specific Gaussian filters to accumulate features from different

durations of events. In all these studies, they dealt with both

the temporal localization and classification. With consideration

of the unequal importance of each frame in event perception, in

this study, we propose a deep learning framework with attention

models. The attention models assign an importance weight for

each frame in the labeled regions. The final feature representa-

tion is obtained by accumulating features of weighted frames.

The proposed framework explicitly introduces global and local

attention models to explore the label uncertainty information

for event feature extraction and classification which is different

from previous studies.
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Figure 1: The proposed framework with global and local atten-

tions for acoustic event detection.

2. Convolutional recurrent neural network
with global and local attentions

Our proposed framework is based on a CRNN architecture as

showed in Fig. 1. In this figure, “CNN” is a convolutional

neural network followed by a “Pool” process. “RNN” is a bi-

directional RNN network with LSTM neural unit. “GAT” and

“LAT” are global and local attention blocks. W1, W2, W3,

and Wglobal are transform matrices. “⊗” is an element-wise

multiplying operator. In this CRNN framework, the CNN layer

is used to extract frequency-shift invariant features, the RNN

layer is used to explore temporal structure of a sequence from

the CNN outputs, and extract a global representation for an in-

put sequence. The output of CNN in each time step is first

weighted with a global attention coefficient calculated by the

“GAT” block which takes the global and local features as in-

puts, and then is further weighted by a local attention coefficient

calculated by the “LAT” block which only takes the local fea-

ture as input. In the last stage, the feature vector is composed of

two components, one is from the average of the weighted local

features, the other is from the global representation extracted by

the RNN. The importance weights provided by the global and

local attention blocks can be regarded as a frame based event

presence likelihood (EPL). In feature extraction, frames with

low EPLs will be ignored while will be emphasized with high

EPLs. In the followings, each process block is explained in de-

tails.

2.1. Convolution and pooling for local feature extraction

In conventional CNN model for AED, a group of two-

dimensional convolutional filters are used. The model ex-

tracts time- and frequency-shift invariant features for ro-

bust AED. Given a chunk of input feature vectors X =
[x (1) ,x (2) , ..., x (T )] (with T frames), the output of the i-th
convolutional filter at time t is:

yi (t) = g
(
Wi

cnnx
f :f+wf−1

t:t+wt−1 + bi
cnn

)
, (1)

where Wi
cnn and bi

cnn are the weight matrix and bias vector pa-

rameters of the i-th convolutional filter, wf and wt are the tem-

poral and frequency window widths of the filter kernel, and g (.)
is an activation function. In the proposed framework, the tem-

poral structure information is explored by an RNN process, the

convolution is done only along the frequency axis, i.e., wt = 1.

For an input sequence X, the output of the i-th CNN filter is

obtained as Yi =
[
yi (1) ,yi (2) , ...,yi (T )

]
. With a pool-

ing operator, a feature from the i-th CNN filter is obtained as

ȳi = poolt
(
poolf

(
Yi

))
, where poolt (.) and poolf (.) are

pooling operators along temporal and frequency dimensions,

respectively. For equal contribution of each frame in event per-

ception, the temporal average pooling is used for feature extrac-

tion as (Eq. (2)):

ȳi
A =

1

T

T∑

t=1

ypool f (t) (2)

Or picking up the most important frame with maximum activa-

tion as representation, i.e., temporal max-pooling as (Eq. (3)):

ȳi
M = max

t∈{1,2,...,T}
{ypool f (t)} (3)

In Eqs. (2) and (3), ypool f (t) is a feature vector obtained from

pooling of the CNN output along the frequency dimension.

Ypool f= poolf
(
Yi

)

= [ypool f (1) ,ypool f (2) , ...,ypool f (T )]
(4)

Considering the un-equal importance of each frame, the tem-

poral pooling after CNN is determined by the attention blocks,

i.e., temporal attention pooling.

2.2. Recurrent neural network for global feature extraction

The feature vector sequence X can be directly used as in-

put to an RNN for feature extraction and classification. In

the proposed CRNN based architecture, the frequency-pooled

feature after the CNN processing is applied as input to the

RNN, i.e., the RNN is applied on temporal sequence of

Ypool f= [ypool f (1) ,ypool f (2) , ...,ypool f (T )]. The tem-

poral context information is explored by the RNN to extract a

global feature representation of the input sequence.

2.3. Temporal attention for frame based event presence

likelihood estimation

Attention based neural network models have been intensively

studied in neural machine translation, natural language pro-

cessing, image processing and automatic speech recognition

[21, 22, 23]. The attention models focus on important features

or regions for the underlying tasks. In this paper, by using an

attention model, the label uncertainty information which is an-

other useful information in deep learning, can be explored. The

model is designed to provide temporal local feature selection

mechanism in discriminative feature extraction and modeling

for AED.

As shown in Fig. 1, in the CRNN based framework, sup-

pose the output of RNN is H = [h (1) ,h (2) , ...,h (T )], in

the global attention network (“GAT” block), for each time step,

an attention weight (scalar) is obtained. It is implemented as a

feed-forward neural network as:

c (t) =

[
W1ypool f (t)

W2ĥ

]

αGAT (t) = sigmoid
(
uT tanh (c (t) + bGAT)

)
,

(5)
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where W1 ∈ ℜKcnn×Kcnn , W2 ∈ ℜKrnn×Krnn , bGAT ∈
ℜ(Kcnn+Krnn)×1, u ∈ ℜ(Kcnn+Krnn)×1 are parameter ma-

trices and vectors which are used to calculate the global atten-

tion weights. They are shared by all time steps. ypool f (t) is

the frequency-pooled output vector from CNN at time step t.
ĥ is the summarization of the temporal sequence as a global

feature representation, it can be ĥ = h (T ). In our study, we

found that using ĥ = 1
T

T∑
t=1

h (t) could obtain a slight better

performance than using only the output of the last time step of

the RNN. c (t) is a vector composed of concatenation of a lin-

ear transformed ypool f (t) and linear transformed ĥ, Kcnn and

Krnn are the neuron numbers of the CNN and RNN layers, re-

spectively. “tanh” is the tangent function of neural activation.

Rather than using a “softmax” function as used in most neural

attention modeling, a logistic “sigmoid” function is used in this

study. It is based on the consideration that the attention is used

for a binary category problem as event presence or absence, it

is possible to focus on several important frames rather than on

only one important frame in feature extraction. This global at-

tention weight is used to weight local feature from the CNN at

time step as:

z (t) = αGAT (t)ypool f (t) (6)

Besides the global attention, a local attention processing

(“LAT” block) is further used to refine the feature extraction.

The attention weight is calculated as:

βLAT (t) = sigmoid
(
vT tanh (W3z (t) + bLAT)

)
, (7)

where W3 ∈ ℜKcnn×Kcnn , bLAT ∈ ℜKcnn×1, v ∈
ℜKcnn×1 are parameters for local attention weight calculation.

This local attention weight is used to weight the feature as:

f (t) = βLAT (t) z (t) (8)

Combining Eqs. 6 and 8, we obtain the feature calculation as:

f (t) = αGAT (t) βLAT (t)ypool f (t) (9)

The final feature for a sequence is calculated as an average of

the attention weighted outputs as:

f̄ =
1

T

T∑

t=1

αGAT (t)βLAT (t)ypool f (t) (10)

This averaged feature can be directly used in AED. From Eq.

10, we can see that when αGAT (t)βLAT (t) = 1, it is the same

as used in Eq. 2, i.e., the temporal average pooling on each

frame with equal importance in feature extraction. Considering

that global feature summarized from the RNN encodes tempo-

ral structure information for AED, we concatenated the local

averaged feature with this global feature as a final feature rep-

resentation which is used for classification as:

a =

[
f̄

Wglobalĥ

]

o = sigmoid (Wca+ bc) ,
(11)

where Wglobal ∈ ℜKrnn×Krnn is a transform matrix used

to transform the global feature to be concatenated with the

local averaged feature, and Wc ∈ ℜKclass×(Kcnn+Krnn),

bc ∈ ℜKclass×1 are parameters to be learned for classifier

layer.

3. Experiments

The data sets for AED of real recorded audio from DCASE (de-

tection and classification of acoustic scenes and events) 2016

challenge [24] was used to test the proposed algorithms. Four

setting conditions were used in experiments, i.e., folds 1-4, and

each includes training, validation, and testing sets. In each fold,

there are two recording conditions tagged as “Home” and “Res-

idential area” with a total of 18 audio event categories. In this

study, for each setting condition, we trained one model without

considering their recording conditions. The frame based log

Mel filter band feature (60 filter bands) was used as raw feature.

The input audio sequence chunks (each with a target label) to

deep models are segmented by a shifting window (shifting rate

as 10 ms) with a span of 81 frames (40 frames in the left and

right of the current frame). With a series of transforms by dif-

ferent deep models, a suitable feature representation is explored

for classification. As a detection task, the event detection preci-

sion, event recall, and their harmonic mean F1 scores are widely

used as evaluation metrics in AED [14]. In this study, segment-

based F1 metric is used.

For comparison, deep models including bi-directional RNN

(using LSTM units), CNN, and CRNN neural network models

were implemented and tested (as well as the classical GMM

with MFCC feature based BoF classification method), the re-

sults are summarized in table 1. In the RNN model, two recur-

rent layers each with 128 bi-directional LSTM units are used,

and the exponential linear unit (ELU) function is used as an

activation function. After the transforms of the two RNN lay-

ers, a fully connected layer with 256 neurons is used to further

transform the features. There are two types of feature summa-

rization methods, one is with an average on the outputs of all

time steps (“RNN A”), the other is using the output of the last

time step of the RNN (“RNN L”). The summarized feature vec-

tor is obtained to represent the global feature of the sequence.

The CNN model has two convolutional layers both with 128

filters, and each filter is with a kernel size of 3*10. The ELU

is used as the activation function. In feature pooling for each

layer, the max-pooling is used in which the pooling size is 3*3

with stride of (3, 3). A dropout with probability 0.3 is used af-

ter pooling process. There are also two types of feature extrac-

tion methods in the final stage of the CNN model, one is global

max-pooling (“CNN M”), the other is global average pooling

(“CNN A”). The global pooled feature is used for the final fea-

ture representation. In the CRNN model, the input feature is

first processed by a CNN layer with 128 filters, the kernel size

of each filter is 1*30, i.e., the convolution is done only along the

frequency dimension. After pooling along the frequency dimen-

sion, two layers of bi-directional LSTMs are applied to explore

temporal information for feature extraction. The output from

each time step is averaged to be a global feature representation

for classification. For all the models, based on the pooled or

summarized feature vectors, a fully connected layer with “sig-

moid” activation is used as the classification layer. In table 1,

“fold1” to “fold4” are evaluation results fold by fold, “Avg T”

is evaluation summarized from all folds. From the results, we

can see that, for the RNN model, using an average from all

time steps as representation (“RNN A”) obtained a slight bet-

ter performance than using the output of the last time step only

(“RNN L”). The CNN model showed better performance than

using the RNN model which confirmed that the CNN based fea-

ture extraction has a strong power in exploring the temporal-

and frequency-invariant features for classification. In addition,

using a global average pooling in extracting the final feature rep-
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Table 1: Performance of different models (segment based F1

measurement) (%)

Methods fold1 fold2 fold3 fold4 Avg T

GMM 42.3 28.7 34.7 25.1 33.7

RNN L 45.0 29.8 43.6 34.3 38.9

RNN A 43.6 30.9 47.1 32.1 39.2

CNN M 45.1 30.2 55.0 27.8 40.7

CNN A 48.9 32.2 49.4 27.8 41.3

CRNN 48.8 30.3 55.6 28.5 42.0

GL ATT 53.9 28.9 49.7 37.9 44.5

GL ATT CAT 50.8 29.5 56.4 38.3 45.2

resentation (“CNN A”) appears to be better than using a global

max-pooling process. In the CRNN model, with a CNN for fea-

ture extraction, then applying an RNN for temporal structure

exploration showed better performance which can be regarded

as the advantage of combination of CNN and RNN. Based on

the global and local attention process, the “GL ATT” used a

representation with only attention weighted feature (Eq. 10),

the “GL ATT CAT” used the concatenated features from both

the weighted feature and global feature from the RNN (Eq. 11).

From these results, we can see that with the attention model for

temporal frame selection in feature extraction, a better perfor-

mance was obtained. We have also evaluated algorithms with

only global or local attention module in experiments. In the im-

plementation, in Eq. 10, either the βLAT or αGAL is set to be

one. Integrating either of them could improve the performance

in our experiments, but the combination of both showed the best

performance on our current task.

4. Discussion and conclusion

In this paper, considering the event presence or absence of each

frame in temporal feature aggregation, we proposed a deep

learning framework with global- and local-based attention mod-

els for AED. These attentions estimate the importance of frames

in a probabilistic way as soft measures. Based on these soft

measures, discriminative frames are selected in feature extrac-

tion. This mechanism can be regarded as an attention controlled

temporal pooling for feature extraction. Our experiments con-

firmed the efficiency of the proposed attention framework. The

proposed attention framework is very suitable for exploring la-

bel uncertainty information for supervised deep learning, and it

will be extended to other tasks in which labeling or annotation

can not be accurately determined and given.
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