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Abstract
To improve the speech recognition accuracy under the multi-
talker scenario, we propose a novel model architecture that
incorporates the attention mechanism and gated convolutional
network (GCN) into our previously developed permutation in-
variant training based multi-talker speech recognition system
(PIT-ASR). The new architecture has three components: an
encoding transformer, an attention module and a frame-level
senone predictor. The encoding transformer first transforms
a mixed speech sequence into a sequence of embedding vec-
tors. Then the attention mechanism extracts individual con-
text vectors from this embedding sequence for different speaker
sources. Finally the predictor generates the senone posteriors
for all speaker sources independently with the knowledge from
the context vectors. To get better embedding representations
we explore gated convolutional networks in the encoding trans-
former. The experimental results on the artificially mixed two-
talker WSJ0 corpus show that our proposed model can reduce
the word error rate (WER) by more than 15% relatively com-
pared to our previous PIT-ASR system.
Index Terms: permutation invariant training, attention model,
gated convolutional network, multi-talker speech recognition

1. Introduction
The progress made in deep learning technology has led to sig-
nificant improvements in single-talker speech recognition task
in the past a few years [1, 2, 3, 4, 5, 6, 7, 8]. The state of the
art system even achieved a human comparable performance on
close-talk tasks [9] and some simple noisy tasks [10, 11]. De-
spite all these advancements, current methods still have a huge
degradation when facing more complex noisy scenarios in real-
ity, especially the far-field condition interfered with background
noise, reverberation and speech from other talkers.

In this paper, we aim to attack the monaural multi-talker
speech recognition problem, which aims to recognize the in-
dividual speech source from the overlapped speech mixed in
one single channel. Recently, there have been several deep
learning-based works focusing on the monaural multi-talker
speech separation and recognition. In [12], a deep neural net-
work was designed to directly recognize the phonemes and
the label assignment during training was based on the speech
energies. In [13, 14], a deep framework called deep cluster-
ing (DPCL) separates the speech by segregating the embed-
ding vectors of all time-frequency bins on the spectrum. An-
other model called deep attractor network (DANet) [15] learns
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a high-dimensional embedding of the speech spectrum and clus-
ters embeddings with attractor points. Permutation invariant
training (PIT) [16, 17, 18, 19, 20, 21, 22, 23, 24] addresses this
problem using a simple, yet effective training criterion by min-
imizing the average minimum error with the best output-target
assignment.

Recently the attention mechanism becomes popular in the
sequence to sequence framework used for, e.g., machine trans-
lation [25, 26] and end-to-end speech recognition [27, 28]. Tak-
ing the attention based end-to-end speech recognition as an
example [27, 28], the input is the frame-level speech feature
sequence, and the output is the character- or word-level se-
quence. An encoder-decoder framework is usually applied to
learning the relationship between these two sequences. The ba-
sic encoder-decoder model cannot achieve a good performance
because it is hard to accurately align the input and output se-
quences. The attention mechanism, however, enables the model
to learn a better alignment between the input and output se-
quences with different lengths, extracts the related knowledge
by focusing on the properly aligned input sequence, and thus
significantly improves the system.

In this work, we explore a new model that integrates the
attention mechanism into our previously developed PIT-ASR
model for multi-talker speech recognition. The proposed archi-
tecture consists of three components: an encoding transformer,
an attention module and a frame-level senone predictor. Differ-
ent from the prior arts on the attention mechanism, which aims
at obtaining a better alignment between the input and output se-
quences, this work exploits the attention mechanism to better
trace speakers and eliminate interferences by attending on the
embedding sequence segments. Motivated by the recent suc-
cess on language modeling [29] and audio classification [30],
we also utilize the gated convolutional network (GCN) in the
encoding transformer to generate better embedding sequence.
Compared with the conventional CNN, GCN improves the sys-
tem by automatically controlling the information flow to the
next layer via the learned gate.

The rest of the paper is organized as follows. In Section
2 we review the multi-talker speech recognition task and the
permutation invariant training (PIT). In Section 3, we describe
the proposed model that incorporates the attention mechanism
and the gated convolutional networks. Experimental results are
presented in Section 4. We conclude the paper in Section 5.

2. Permutation Invariant Training for
Monaural Multi-Talker Speech Recognition
In monaural multi-talker speech recognition, it is given a lin-
early mixed single microphone signal y[n] =

∑S
s=1 xs[n],

where xs[n], s = 1, ..., S are S streams of speech sources from
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different speakers. The goal is to separate and recognize these
streams. “label permutation” is a critical problem in the multi-
talker speech separation and recognition tasks, and permutation
invariant training (PIT) [16, 17, 18, 19, 20, 21, 22, 24] is an
efficient and effective technique to address this problem. In
the previous PIT-ASR [18] model, a deep bidirectional LSTM
network takes the spectrum features Y of the mixed signal y
as inputs, and outputs S individual senone posterior streams
Os, s = 1, · · · , S. The model is optimized with PIT to mini-
mize the objective function

J =
1

S
min

s′∈permu(S)

∑

s

∑

t

CE(`s
′

t ,O
s
t ), s = 1, · · · , S (1)

where permu(S) is a permutation of [1, · · · , S]. Note that PIT
automatically finds the appropriate assignment no matter how
the labels are ordered, and solves the label permutation problem
and speaker tracing problem by computing the cross entropy
(CE) over the whole sequence for each assignment. Although
DPCL [13, 14] and DANet [15] techniques can also address
the label permutation problem, PIT-ASR is much simpler and
more compact since it allows direct multi-talker mixed speech
recognition without explicit separation.

3. Attention-based Model for Multi-talker
Speech Recognition with PIT

The newly proposed entire framework with attention mecha-
nism is shown in Figure. 2. The architecture can be divided
into three parts: 1) an encoding transformer, through which the
mixed speech feature sequence is encoded into the embedding
sequence h; 2) an attention module, which learns an attention
vector α to generate speaker i specific context vectors cit at each
frame t based on the embedding sequence; 3) a predictor, which
takes the learned context vectors cit as input and generates the
senone posteriors for each speech source i as the output. The
permutation invariant training is implemented on the outputs
of the predictors. In order to obtain better mixed speech em-
bedding representations through the encoding transformer, we
replaced some recurrent layers (BLSTM-RNN) with convolu-
tional layers (CNN) and the gated convolutional layers (GCN)
as a further exploration.

3.1. Encoding Transformer and Gated Convolutional Neu-
ral Networks

	𝜎
Sigmoid

Convolution

Convolution

Gate

Input features
Ouput features

Figure 1: Gated convolutional neural networks.

The encoding transformer is used to process the input spec-
trum feature sequence into the embedding sequence. The input
spectrum feature yt is fed into a deep model and turned into the
corresponding encoded embedding vector ht at each time step
t. Usually several stacked BLSTM-RNN layers can be used as
the encoding network, in which the encoded embedding vector

ht is computed as

hf
t = LSTMf (yt) , t = 1, . . . , T (2)

hb
t = LSTMb (yt) , t = 1, . . . , T (3)

ht = Stack
(
hf
t ,h

b
t

)
(4)

where LSTMf and LSTMb are the forward and backward
LSTMs respectively.

Our previous work [20] indicated that using convolutional
layers in the original PIT-ASR model can improve the perfor-
mance of the system on the overlapped speech. For this reason
we explored to replace some BLSTM-RNN layers of the en-
coding transformer with convolutional layers and gated convo-
lutional networks (GCN) as shown in Figure.1. Given the input
X, the gated convolutional layer is defined as

h(X) = (X ∗W + b)⊗ σ(X ∗V + d) (5)

where ∗ is the convolution operator, σ is the sigmoid function,
W,V are the weight parameters, and b,d are the biases.

GCN replaces the direct non-linear activation function in
the conventional CNN with the gated linear units, and has
shown promising ability on many machine learning tasks re-
cently [29, 30]. With the gating mechanism, GCNs relieve the
gradient vanishing problem in training deep models, as they
provide a linear path for the gradients while retaining non-linear
capabilities with the sigmoid operation. In our multi-talker
mixed speech recognition task, GCNs in the encoding trans-
former also generate better embedding representation.

3.2. Attention Mechanism for Multi-talker Speech Recog-
nition

Different from the previous attention works, which aim at ob-
taining a better alignment between the input and output se-
quences with different sequence lengths. In our model, how-
ever, alignment is unnecessary since the output, the frame-level
senone posterior sequence, has the same length as the input se-
quence. Instead, the attention model here is used to more accu-
rately trace the speakers and eliminate interferences by attend-
ing to the specific speech embedding sequence segment. The
attention mechanism is shown in Figure.3. During the model
training, all the parameters in the attention module are jointly
optimized with those in other modules.

Local attention is used in this work which only selectively
attends to a context window of input embedding sequence. To
be more specific, at every time t, the context vector cit is de-
rived as a weighted average over a subsequence of the encoded
embedding vectors within the window [t − N, t + N ]. N is a
hyper-parameter that represents the context window size. The
attention weights for speaker i at time t is αi

t ∈ R2N+1.
At time step t, the senone posterior probability for speaker

i is defined as

p(oi
t|oi

1, ...,o
i
t−1,yt) = g(sit, c

i
t) (6)

where cit and sit are the generated context vectors from the at-
tention model and the hidden state in the predictor for speaker
i, and g is normally realized with an MLP. sit is computed as

sit = LSTM(sit−1, c
i
t) (7)

where LSTM is the uni-directional forward LSTM layer. And
the attention vector αi

t is obtained by comparing the previous
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Figure 2: PIT framework with attention mechanism for multi-
talker speech recognition.
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Figure 3: Attention mechanism.

hidden state sit−1 with each encoded embedding vector ht:

αi
t(k) = Attend(sit−1,hk)

=
exp(score(sit−1,hk))∑
j exp(score(s

i
t−1,hj))

(8)

where score is a content-based function

score(sit−1,hk) =

{
sit−1

T
Wahk general

vT
a tanh

(
Wa[s

i
t−1;hk]

)
concat

(9)

where va and Wa are the learned parameters in the attention
model. The context vector cit is finally computed as a weighted
sum over the embedding vector ht with a segment size 2N +1:

cit = αi
t(1)ht−N + · · ·+ αi

t(2N + 1)ht+N (10)

We believe that the attention module can help continuously
attend to a specific speaker on every output by extracting con-
text knowledge using the context vector. As shown in Figure 2,
after encoding the input features, two separate attention streams
are constructed individually to get the context vector for each
speaker respectively. Then the individual context vectors cit of
each speaker are fed into one RNN-based predictor to generate
the frame-level senone posterior stream. The entire architecture
is optimized with permutation invariant training as the normal
PIT-ASR model.

4. Experiments
4.1. Experimental setup and baseline system

To evaluate our proposed model, we conducted all the exper-
iments on the artificially mixed two-talker Wall Street Journal
(WSJ0) speech corpus released by MERL [14]. There are about
30hr-speech in the training set and 10hr-speech in the validation
set, which are generated by randomly selecting a pair of utter-
ances from different speakers in the WSJ0 training set si tr s,
and mixing them at various signal-to-noise (SNR) randomly
chosen between 0dB and 10dB. Similarly, the evaluation set
contains the 5hr-speech generated by mixing utterances of 16
unseen speakers from si dt 05 and si et 05. Note that we only
test on the evaluation set, since the open-set condition is more
interesting and important for the research in this area.

40-dimensional log filter bank features are used as the in-
put for all the models, and the labels for the model training are
aligned with a DNN model built following the WSJ recipe in
Kaldi [31]. There are totally 3429 tied-states in the output layer.

All neural network acoustic models proposed in this work are
built with Pytorch [32] using SGD on 1 GPU. The learning rate
is set to 2e−4 and the gradients are clipped with L2-norm 500.
A standard pipeline in Kaldi WSJ recipe is used for decoding.
For scoring, we evaluate the hypotheses pairwisely against the
two references, and make the assignment with better WER as
the final recognition results for each utterance.

Firstly, a baseline normal PIT-ASR system is constructed as
in our previous work [18]. It has a 6-layer BLSTM-RNN model
with 384 memory cells in each layer 1. The output of the last
BLSTM layer is sent directly to two output layers with soft-
max activation, representing two recognition streams. These
two outputs are then used in decoding to obtain the hypotheses
for two talkers. The averaged WER on two talkers of the base-
line is shown as the first line in Table 1. The WER is much
higher than that of the single-talker task on this corpus, which
demonstrates the big challenge for multi-talker ASR.

4.2. Evaluation on the Gated CNN

We replace some BLSTM layers at the bottom of the baseline
PIT-ASR model with the convolutional layers. The usual CNN
layer is utilized and the depth of CNN layers is increased from
2 to 6 (from a shallow CNN to a deep CNN). The results are
shown in the middle part of Table 1. It is observed that using
CNN layers in PIT-ASR can get obvious improvements. In-
creasing convolutional layer depth brings further gains.

The GCN with 2 Gated convolutional layers plus 4 BLSTM
layers is explored. The result, shown in the bottom line of Table
1, indicates that GCN-BLSTM achieved relative 12% and 6%
improvements upon the 6L-BLSTM and 2L-CNN-4L-BLSTM
respectively. Even the shallow GCN-BLSTM slightly outper-
forms the deep CNN-BLSTM.

Table 1: WERs (%) of normal PIT-ASR models with different
model structures

Model # L CNN/GCN #L BLSTM AVG WER

BLSTM — 6 BLSTM 37.2

CNN-BLSTM
2 CNN 4 BLSTM 34.8
4 CNN 4 BLSTM 33.5
6 CNN 4 BLSTM 32.9

GCN-BLSTM 2 GCN 4 BLSTM 32.7

1We used less cells here compared to our previous works [18, 20]
for the fast development, and larger model scale can get a better system
performance based on our experiments.
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4.3. Evaluation on the Attention Mechanism

The proposed method with attention mechanism is then eval-
uated. The new model has an encoding transformer that is a
3-layer BLSTM and a predictor module that is a 3-layer LSTM
with 384 cells per layer. The context size used in the attention
model is set to 10. Two scoring methods in the attention model,
i.e. “general” and “concat” shown in Equation 9, are compared,
and the results are listed in Table 2. It is observed that the newly
proposed architecture with attention mechanism is significantly
better than the normal PIT-ASR for multi-talker speech recog-
nition. For the different scoring modes in the attention module,
the “concat” obviousely outperforms the “general”. The “con-
cat” scoring method is utilized in all the following experiments.

Table 2: WERs (%) of the attention-based PIT-ASR models with
different score methods in the attention module

Model Score Method AVG WER

PIT-ASR — 37.2

+ Attention general 34.6
concat 33.1

Table 3: WERs (%) of the attention-based PIT-ASR models with
different configurations in the model architecture, including the
number of BLSTM layers in the encoding module (#L Enc), the
number of LSTM layers in the predictor module (#L Pred) and
the context window size in the attention module (#N Ctx)

Model #L Enc #L Pred #N Ctx AVG WER

PIT-ASR — — — 37.2

+ Attention

3 3 5 34.6
3 3 10 33.1
3 3 15 32.4
4 2 10 32.6
5 1 10 32.3
4 2 15 31.0

Additional experiments were performed for the proposed
attention-based PIT-ASR model. Different configurations with
regard to the number of layers in the encoding module and the
predictor module, and the context window size in the attention
module were implemented and compared. All the results are
shown in Table 3. Several observations can be made: 1) The
larger the context window in the attention model, the better the
performance, since attending on longer embedding sequence
can generate more accurate context vectors. 2) When keeping
the total number of layers unchanged in the proposed model
(with the comparable model scale), more layers in the encoding
transformer can produce better embedding representations and
thus better performing system. 3) The system with both larger
context window and deeper encoding module performs best and
achieves relative 17% error reduction compared to the baseline.

4.4. Evaluation of the integrated system

Finally we integrate the gated CNN into the attention-based
PIT-ASR model. Based on the 4th line of Attention configu-
rations in Table 3, i.e. 4-layer BLSTM and 2-layer LSTM in
the encoder and predictor respectively with the context size 10,
two BLSTM layers in encoding module are replaced with two
Gated CNN layers, and others are kept the same2. The system

2we have not enough time to finish with other configurations before
the submission, such as using the longer context window size

performance comparison is illustrated in Table 4. It is observed
that incorporating gated convolutional networks enables the en-
coding module to generate better embeddings which achieves
another gain upon the attention-based PIT-ASR system.

Table 4: WERs (%) comparison of the integrated systems

Model Attention GCN AVG WER

PIT-ASR — — 37.2
+ Attn

√
— 32.6

+ Attn + GCN
√ √

31.6

4.5. Analysis on Attention Models

As stated above, the attention mechanism is exploited here in
PIT-ASR to better trace speakers and eliminate interferences by
attending on the embedding sequence segments. To better un-
derstand and validate this, we do the statistics on the attention
weights αi

t, and measure the difference between αi
t for the in-

dividual speakers i at time step t. The angle difference θ based
on the cosine-distance is used:

θ〈α1
t , α

2
t 〉 = arccos

α1
t · α2

t

‖α1
t‖ ‖α2

t‖
(11)

A larger angle difference, approaching 90◦, indicates the
better discrimination between the speakers with attentions, and
vice versa. We do the statistics on the evaluation set and the
distribution is shown in Figure 4. It shows that only a very
small part is with close similarity, around 1% with less than
10◦, and a large portion of the distance between the attentions is
over 50◦. The average distance of attentions between speakers
on the open-set evaluation is 50◦, which indicates the potential
ability on speaker tracing and interference elimination from the
proposed new architecture for multi-talker speech recognition.
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Figure 4: Distribution of the distance between attentions.

5. Conclusions
In this paper, we proposed a novel model for monaural multi-
talker speech recognition. More specifically, we enhanced the
previously developed baseline PIT-ASR model in two ways.
First, an attention mechanism that extracts the knowledge from
a context segment is designed to provide better speaker trac-
ing and interference elimination ability. Second, gated con-
volutional networks are incorporated into the encoding trans-
former to generate better embedding representation. Both tech-
niques lead to performance improvements. The final system re-
duces WER by more than 15% relatively over our previously
proposed baseline PIT-ASR model for monaural multi-talker
speech recognition task on the two-talker mixed WSJ0 corpus.
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