
Gated Recurrent Unit Based Acoustic Modeling with Future Context

Jie Li1, Xiaorui Wang1, Yuanyuan Zhao2, Yan Li1

1Kwai, Beijing, P.R. China
2Institute of Automation, Chinese Academy of Sciences, Beijing, P.R.China
{lijie03, wangxiaorui, liyan}@kuaishou.com, yyzhao5231@ia.ac.cn

Abstract
The use of future contextual information is typically shown to
be helpful for acoustic modeling. However, for the recurrent
neural network (RNN), it’s not so easy to model the future tem-
poral context effectively, meanwhile keep lower model latency.
In this paper, we attempt to design a RNN acoustic model that
being capable of utilizing the future context effectively and di-
rectly, with the model latency and computation cost as low as
possible. The proposed model is based on the minimal gated re-
current unit (mGRU) with an input projection layer inserted in
it. Two context modules, temporal encoding and temporal con-
volution, are specifically designed for this architecture to model
the future context. Experimental results on the Switchboard
task and an internal Mandarin ASR task show that, the pro-
posed model performs much better than long short-term mem-
ory (LSTM) and mGRU models, whereas enables online decod-
ing with a maximum latency of 170 ms. This model even out-
performs a very strong baseline, TDNN-LSTM, with smaller
model latency and almost half less parameters.
Index Terms: speech recognition, acoustic modeling, future
temporal context, gated recurrent unit

1. Introduction
It is typically shown to be beneficial for acoustic modeling to
make full use of the future contextual information. In the liter-
ature, there are variety of methods to realize this idea for dif-
ferent model architectures. For feed-forward neural network
(FFNN), this context is usually provided by splicing a fixed set
of future frames in the input representation[1]. It also exists
other approaches relating modifying FFNN model structures.
The authors in [2, 3] proposed a model called feedforward se-
quential memory networks (FSMN), which is a standard FFNN
equipped with some learnable memory blocks in the hidden lay-
ers to encode the long context information into a fixed-size rep-
resentation. The time delay neural network (TDNN) [4, 5] is an-
other FFNN architecture which has been shown to be effective
in modeling long range dependencies through temporal convo-
lution over context.

As for unidirectional recurrent neural network (RNN), this
is usually accomplished using a delayed prediction of the out-
put labels[6]. However, this method only provides quite limited
modeling power of future context, as shown in [7]. While for
bidirectional RNN, this is accomplished by processing the data
in the backward direction using a separate RNN layer [8, 9, 10].
Although the bidirectional versions have been shown to outper-
form the unidirectional ones with a large margin [11, 12], the
latency of bidirectional models is significantly larger, making
them unsuitable for online speech recognition. To overcome
this limitation, chunk based training and decoding schemes
such as context-sensitive-chunk (CSC) [13, 14] and latency-
controlled (LC) BLSTM [11, 15] have been investigated. How-

ever, the model latency is still quite high, since in all these on-
line variants, inference is restricted to chunk-level increments
to amortize the computation cost of backward RNN. For ex-
ample, the decoding latency of LC-BLSTM in [15] is about
600 ms, which is the sum of chunk size Nc and future con-
text frames Nr . To overcome the shortcomings of the chunk-
based methods, Peddinti et al. [7] proposed the use of tempo-
ral convolution, in the form of TDNN layers, for modeling the
future temporal context while affording inference with frame-
level increments. The proposed model is called TDNN-LSTM,
and is designed by interleaving of temporal convolution (TDNN
layers) with unidirectional long short-term memory (LSTM)
[16, 17, 18, 19] layers. This model was shown to outperform
bidirectional LSTM in two automatic speech recognition (ASR)
tasks, while enabling online decoding with a maximum latency
of 200 ms [7].

However, TDNN-LSTM’s ability to model the future con-
text comes from the TDNN part, whereas the LSTM itself is
incapable of utilizing the future information effectively. In this
paper, we attempt to design a RNN acoustic model that can
model the future context effectively and directly, without the
dependence on extra layers, for instance, TDNN layers. In ad-
dition, the model latency and computation cost should be as low
as possible.

With this purpose, we choose to use the minimal gated
recurrent unit (mGRU) [20] as our base RNN model in this
work. mGRU is a revised version of GRU [21, 22] and con-
tains only one multiplicative gate, making the computational
cost of mGRU much smaller than GRU and vanilla LSTM [19].
Based on mGRU, we propose to insert a linear input projection
layer to mGRU, getting a model called mGRUIP. The inserted
linear projection layer compresses the input vector and hidden
state vector simultaneously. Since the size of this layer is much
smaller than cell number, mGRUIP contains much less parame-
ters than mGRU. In addition to this, there are two other advan-
tages of the input projection layer. The first one is that inserting
this layer is beneficial to the ASR performance. Our experi-
ments on a 309-hour Switchboard task show that mGRUIP out-
performs mGRU significantly. This finding is consistent with
that in LSTM with input projection layer (LSTMIP) [23].

The second (also the most important) advantage is that this
input projection forms a bottleneck in the recurrent layer, mak-
ing it possible to design a module on it, that can utilize the fu-
ture context information effectively, meanwhile without signif-
icantly increasing the model size. In this work, we design two
kinds of context modules specifically for mGRUIP, making it
capable of modeling future temporal context effectively and di-
rectly. The first module is referred to as temporal encoding, in
which one mGRUIP layer is equipped with a context block to
encode the future context information into a fixed-size repre-
sentation, similar with FSMN. Temporal encoding is performed
at the input projection layer, making the increase of computa-

Interspeech 2018
2-6 September 2018, Hyderabad

1788 10.21437/Interspeech.2018-1544

http://www.isca-speech.org/archive/Interspeech_2018/abstracts/1544.html


tion cost quite small. The second module borrows the idea from
TDNN, and is called temporal convolution as the transforms in
it are tied across time steps. In temporal convolution, future
context information from several frames is spliced together and
compressed by the input projection layer. Thanks to the small
dimensionality of the projection, temporal convolution brings
quite limited additional parameters. In this work, these two con-
text modules are shown to be quite effective on two ASR tasks,
while maintaining low latency (170 ms) online decoding. It is
shown that compared with LSTM and mGRU, mGRUIP with
temporal convolution provides more than 13% relative WER re-
duction on the full Switchboard Hub5’00 test set, while on our
1400-hour internal Mandarin ASR task, the relative gain is 13%
to 24% for different test sets. In addition, the proposed model
outperforms TDNN-LSTM with smaller decoding latency and
almost half less parameters.

This paper is organized as follows. Section 2 describes the
model architecture of GRU and its variants, including the pro-
posed mGRUIP and the two context modules. The related work
is introduced in Section 3. We report our experimental results
on two ASR tasks in Section 4 and conclude this work in Sec-
tion 5.

2. Model Architecures
In this section, we will first make a brief introduction to
the model structure of GRU and mGRU. Then the proposed
mGRUIP and two context modules will be introduced in detail.

2.1. GRU

The GRU model is defined by the following equations (the layer
index l has been omitted for simplicity):

zt = σ(Wzxt + Uzht−1 + bz) (1)
rt = σ(Wrxt + Urht−1 + br) (2)

h̃t = tanh(Whxt + Uh(ht−1 ∗ rt) + bh) (3)

ht = zt ∗ ht−1 + (1− zt) ∗ h̃t (4)

In particular, zt and rt are vectors corresponding to the
update and reset gates respectively, where ∗ denotes element-
wise multiplication. The activations of both gates are element-
wise logistic sigmoid functions σ(·), constraining the values of
zt and rt ranging from 0 to 1. ht represents the output state
vector for the current time frame t, while h̃t is the candidate
state obtained with a hyperbolic tangent. The network is fed by
the current input vector xt (speech features or output vector of
previous layer), and the parameters of the model are Wz , Wr ,
Wh (the feed-forward connections), Uz , Ur , Uh (the recurrent
weights), and the bias vectors bz , br , bh.

2.2. mGRU

mGRU, short for minimal GRU, is a revised version of the GRU
described above. It is proposed by [20] and contains two mod-
ifications: removing the reset gate and replacing the hyperbolic
tangent function with ReLU activation. Thus it leads to the fol-
lowing update equations:

zt = σ(Wzxt + Uzht−1 + bz) (5)

h̃t = ReLU(BN(Whxt + Uhht−1) + bh) (6)

ht = zt ∗ ht−1 + (1− zt) ∗ h̃t (7)

where BN means batch normalization.

2.3. mGRUIP

In this work, a novel model called mGRUIP is proposed by in-
serting a linear input projection layer into mGRU. In mGRUIP,
the output state vector ht is calculated from the input vector xt
by the following equations:

vt =Wv[xt;ht−1] (8)
zt = σ(Wzvt + bz) (9)

h̃t = ReLU(BN(Whvt) + bh) (10)

ht = zt ∗ ht−1 + (1− zt) ∗ h̃t (11)

In mGRUIP, the current input vector xt and the previous
output state vector ht−1, are concatenated together and com-
pressed into a lower dimensional projected vector vt by weight
matrices Wv . Then the update gate activation zt and the candi-
date state vector h̃t are calculated based on the projected vector
vt.

mGRUIP can reduce the parameters of mGRU significantly.
The total number of parameters in a standard mGRU network,
ignoring the biases, can be computed as follows:

NmGRU = ni×nc×2 + nc×nc×2

where nc is the number of hidden neurons, ni the number of in-
put units, andNmGRU is the total parameter number of mGRU.
While for mGRUIP, this value becomes:

NmGRUIP = (ni + nc)×np + np×nc×2

where np is the number of units in the input projection layer.
Assuming nc equal with ni, the ratio of these two numbers is:

NmGRUIP

NmGRU
=
np

nc

In a typical configuration we can set nc = 1024 and np = 512,
hence the parameters of mGRUIP is just half of mGRU, making
the computation quite efficient. Despite this, our experiments
on Switchboard task show that mGRUIP outperforms mGRU
with the same number of neurons, i.e., nc. What’s more, in-
creasing nc while decreasing np can further enlarge the gains.

2.4. mGRUIP with Context Module

The input projection layer forms a bottleneck in mGRUIP, mak-
ing it easier to utilize the future context effectively, in the mean-
time keep the increase of model size acceptable. In this paper,
two kinds of context module, namely temporal encoding and
temporal convolution, are specifically designed for mGRUIP.

2.4.1. mGRUIP with Temporal Encoding

In temporal encoding, context information from several future
frames are encoded into a fixed-size representation at the input
projection layer. Thus equation (8) in a standard mGRUIP now
becomes:

vlt =W l
v[x

l
t;h

l
t−1] +

K∑

i=1

f(vl−1
t+s×i) (12)

where the last summation part in equation (12) stands for tem-
poral encoding. In particular, vl−1

t+s×i is the input projection
vector of layer l − 1 from the (t + s × i)th frame. s ≥ 1 is
the step stride and K is the order of future context. f(·) de-
notes the transform function applied to vl−1

t . In this work, we

1789



tried 3 forms: identity (f(x) = x), scale (f(x) = m ∗ x) and
affine transform (f(x) = Wx). Preliminary results show that
the identity function gives slightly better performance than the
other two forms. Thus we choose f(x) = x for the rest of this
paper. It should be noted that in this case, temporal encoding
brings no additional parameters for mGRUIP.

2.4.2. mGRUIP with Temporal Convolution

Temporal encoding uses the projection vector of lower layer
(vl−1

t+s×i) to represent the future context, while in temporal con-
volution, the future information is extracted from the output
state vector of lower layer and then compressed by the input
projection. Equation (8) now becomes:

vlt =W l
v[x

l
t;h

l
t−1] +W l

p[h
l−1
t+s×i; · · · ;hl−1

t+s×K ](13)

where the last part represents temporal convolution. In partic-
ular, hl−1

t+s×i is the output state vector of layer l − 1 on the
(t + s × i)th frame. Same as temporal encoding, s is the step
stride and K is the context order. According to this equation,
hl−1
t+s×i fromK future frames are spliced together and projected

to a lower dimensional space by matrixW l
p. Assuming the num-

ber of hidden neurons in layer l− 1 is nc, temporal convolution
brings K × nc × np additional parameters. However, since the
value of np is usually quite small and we generally splice no
more than two frames (K ≤ 2), the increase of the model size
is limited and acceptable.

3. Related Work
The authors in [23] proposed to insert an input projection
layer to vanilla LSTM to reduce the computation cost. In this
work, we tried this idea on mGRU[20], getting a model called
mGRUIP, which is shown to be more effective and more effi-
cient than mGRU.

TDNN-LSTM [7] is one of the most powerful acoustic
model that can utilize future context effectively while has rel-
atively low model latency. However, the ability of modeling the
future temporal context comes from TDNN and has nothing to
do with the LSTM layers. In this work, thanks to the input pro-
jection layer, we empower the mGRUIP to be capable of mod-
eling the future context effectively and directly, by equipping
it with one of the two proposed context modules, temporal en-
coding and temporal convolution. These two modules borrows
the ideas from FSMN [2, 3] and TDNN [4, 5] respectively. The
difference is that, FSMN and TDNN belong to FFNN, therefore
both of them need to model the future context as well as the past
information to capture the long-term dependencies. Whereas
the two proposed context modules are placed in a RNN layer,
and they only need to focus on the future context, leaving the
history to be modeled by recurrent connections.

Row convolution [24], which encodes future context by ap-
plying a context-independent weight matrix, is another method
to model the future context for RNN. The idea is similar with
the two proposed context modules. However, row convolution
in [24] is only placed above all recurrent layers. While in this
work, we place context modules in all hidden layers (except the
first one). This layer-wise context expansion makes the higher
layers having the ability to learn wider temporal relationships
than lower layers. What’s more, the objective function is also
different: connectionist temporal classification (CTC) [25] in
[24] while lattice-free MMI (LF-MMI) [26] in this work.

4. Experiments
In this section, we evaluate the effectiveness and efficiency of
the proposed mGRUIP on two ASR tasks. The first one is the
309-hour Switchboard conversational telephone speech task,
and the second one is an internal Mandarin voice input task with
1400-hour training data. All the models in this paper are trained
LF-MMI objective function computed on 33Hz outputs [26].

4.1. Switchboard ASR Task

The training data set consists of 309-hour Switchboard-I train-
ing data. Evaluation is performed in terms of word error rate
(WER) on the full Switchboard Hub5’00 test set, consisting of
two subsets: Switchboard (SWB) and CallHome (CHE). The
experimental setup follows [26]. We use the speed-perturbation
technique [28] for 3-fold data augmentation, and iVectors to
perform instantaneous adaptation of the neural network [29].
WER results are reported after 4-gram LM rescoring of lattices
generated using a trigram LM. For details about the model train-
ing, the reader is directed to [26].

4.1.1. Baseline Models

Two baseline models, LSTM and mGRU, are trained for this
task. Both of them contain 5 hidden layers, and the cell number
for each layer is 1024. For LSTM, we add a recurrent projec-
tion layer on top of the memory blocks with a dimension of
512, compressing the cell output from 1024 to 512 dimension.
For mGRU, to reduce the parameters of softmax output matrix,
we insert a 512-dimensional linear bottleneck layer between the
last hidden layer and the softmax layer. Both models are trained
with an output delay of 50 ms. The input feature to both models
at time step t is a spliced version from frame t−2 through t+2.
Therefore, they both have a model latency of 70 ms. Following
[7], we use a mixed frame rate (MFR) across layers. In particu-
lar, the first hidden layer is operated at 100Hz frame rate while
the rest of higher layers use a frame rate of 33Hz.

4.1.2. mGRUIP

To evaluate the effectiveness of the proposed mGRUIP, we train
two models containing 5 layers, mGRUIP-A and mGRUIP-B,
with different architectures. In mGRUIP-A, each hidden layer
consists 1024 cells (nc = 1024, same as the baseline models),
and the input projection layer has 512 units (np = 512). While
for mGRUIP-B, the cell number is 2560 and the projection di-
mension is 256. The training configurations are kept same as
the baseline models.

Table 1: Performance comparison of LSTM, mGRU and
mGRUIP on Switchboard task.

Model #Param WER (%)
(M) SWB CHM Total

LSTM 19.7 10.3 20.7 15.6
mGRU 22.1 10.2 20.6 15.5

mGRUIP-A 13.1 9.8 19.0 14.5
mGRUIP-B 16.2 9.7 18.8 14.3

The performance of the two mGRUIP models and two base-
line models is shown in Table 1. We can see that, for these
two baseline models, mGRU has more parameters and performs
slightly better than LSTM. The proposed model mGRUIP-A

1790



contains much less parameters than the baseline mGRU (13.1M
vs. 22.1M), but performs significantly better on the full test set
(14.5 vs. 15.5). This means that the input projection layer can
not only reduce the parameter of mGRU, but also being benefi-
cial to the performance. It is also shown that mGRUIP-B out-
performs mGRUIP-A, meaning that we can improve the ASR
performance by increasing the cell number, meanwhile without
significantly increasing the model size by reducing the projec-
tion dimension in mGRUIP. Compared with mGRU, mGRUIP-
B provides 7.7% relative WER reduction on the full test set
whereas using 5.9M less parameters. In the following experi-
ments, we will set nc = 2560 and np = 256 for the mGRUIP
related models.

4.1.3. mGRUIP with Context Modules

It’s obvious that temporal encoding and temporal convolution
can utilize more future context information by increasing K
and s in equation (12) and (13). However, this will lead to
the increase of model latency and model parameters (for tem-
poral convolution). In this work, we did a lot of experiments
and found the most cost-effective settings for these two context
modules are as follows:

Table 2: The most cost-effective settings for two context mod-
ules.

Layer l = 2 l = 3 l = 4 l = 5

K × s 1× 1 1× 3 1× 3 1× 3

As shown in Table 2, all the four higher mGRUIP layers
(except the first one) are equipped with context modules. The
context order K for all of them is 1, and the step stride s is 3
for the highest three layers while being 1 for the second hidden
layer (l = 2), making the operating frame rates same as the
baselines. After equipped context modules with this setting, the
latency of mGRUIP is increased from 70 ms to 170 ms. Table
3 shows the performance of mGRUIP with these two context
modules. We also train a TDNN-LSTM model following [7],
and the results are shown in the second line of Table 3.

Table 3: Performance comparison of LSTM, mGRU and
mGRUIP on Switchboard task (* are estimated model sizes ac-
cording to [7]).

Model #Param Latency WER (%)
(M) (ms) SWB CHM Total

LSTM 19.7 70 10.3 20.7 15.6
TDNN-LSTM 34.8 200 9.0 19.7 14.4

mGRUIP-B 16.2 70 9.7 18.8 14.3
+Ctx Encd 16.2 170 9.5 18.0 13.8
+Ctx Conv 18.7 170 9.2 17.8 13.5

MFR-BLSTM[7] 33.3∗ 2020 9.0 - 13.6
TDNN-BLSTM-C[7] 45.2∗ 2130 9.0 - 13.8

Several observations can be found in Table 3. First, both of
the two context modules can improve the ASR performance of
mGRUIP. Temporal convolution is more powerful than tempo-
ral encoding, while brings some additional parameters. Second,
compared to LSTM, mGRUIP-B equipped with temporal con-
volution provides 13.5% relative WER reduction, with a frac-
tion of the cost of 100 ms additional model latency. Third,

mGRUIP-B with temporal convolution is more effective than
TDNN-LSTM on the full test set (13.5 vs. 14.4), with smaller
model latency and much less parameters (18.7M vs. 34.8M).
What’s more, compared with the two most powerful models in
[7] (the last two lines of Table 3), the proposed model outper-
forms them on the full set with much smaller model latency
(170 ms vs. 2000 ms).

4.2. Internal Mandarin ASR Task

The second task is an internal Mandarin ASR task, of which
the training set contains 1400 hours mobile recording data. The
performance is evaluated on five public-available test sets, in-
cluding three clean and two noisy ones. The three clean sets:

• AiShell dev: the development set of the released corpus
AiShell-1[30], containing 14326 utterances.

• AiShell test: the test set of the released corpus AiShell-
1, containing 7176 utterances.

• THCHS-30 Clean: the clean test set of THCHS-30
database[31], containing 2496 utterances.

The two noisy test sets are:
• THCHS-30 Car: the corrupted version of THCHS-

30 Clean by car noise, the noise level is 0db.
• THCHS-30 Cafe: the corrupted version of THCHS-

30 Clean by cafeteria noise, the noise level is 0db.
Three ASR systems are built for this task: LSTM, TDNN-

LSTM and mGRUIP-B with temporal convolution. The model
architectures and the training configurations are all the same as
Switchboard task. Results are shown in Table 4.

Table 4: Performance of different models on internal Mandarin
ASR task.

Test LSTM TDNN-LSTM mGRUIP
CER(%) CERR

AiShell dev 5.39 4.81 4.66 13.5%
AiShell test 6.62 5.98 5.71 13.8%

THCHS-30 Clean 11.93 10.97 10.38 13.0%

THCHS-30 Car 12.69 11.38 10.77 15.1%
THCHS-30 Cafe 53.19 44.20 40.26 24.3%

CERR column in Table 4 means the relative CER reduc-
tion of mGRUIP over LSTM. It’s shown that mGRUIP performs
much better than the baseline LSTM model on this task. On the
three clean test sets, the CERR is about 13%, and the gain is
even larger on the two very noisy sets, from 15% to 24%.

5. Conclusions
The aim of this paper is to design a RNN acoustic model that
being capable of utilizing the future context effectively and di-
rectly, with the model latency and computation cost as low as
possible. To achieve this goal, we choose the minimal GRU as
our base model and propose to insert an input projection layer
into it to further reduce the parameters. To model the future con-
text effectively, we design two kinds of context modules, tem-
poral encoding and temporal convolution, specifically for this
architecture. Experimental results on the Switchboard task and
an internal Mandarin ASR task show that, the proposed model
performs much better than LSTM and mGRU models, whereas
enables online decoding with a latency of 170 ms. This model
even outperforms a very strong baseline, TDNN-LSTM, with
smaller model latency and almost half less parameters.

1791



6. References
[1] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent

pre-trained deep neural networks for large-vocabulary speech
recognition,” IEEE Transactions on Audio Speech & Language
Processing, vol. 20, no. 1, pp. 30–42, 2012.

[2] S. Zhang, C. Liu, H. Jiang, S. Wei, L. Dai, and Y. Hu, “Feed-
forward sequential memory networks: A new structure to learn
long-term dependency,” Computer Science, 2015.

[3] S. Zhang, H. Jiang, S. Xiong, S. Wei, and L. R. Dai, “Com-
pact feedforward sequential memory networks for large vocab-
ulary continuous speech recognition,” in INTERSPEECH, 2016,
pp. 3389–3393.

[4] A. W. M. Ieee, T. Hanazawa, G. Hinton, K. S. M. Ieee, and K. J.
Lang, “Phoneme recognition using time-delay neural networks,”
Readings in Speech Recognition, vol. 1, no. 2, pp. 393–404, 1990.

[5] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural
network architecture for efficient modeling of long temporal con-
texts,” in INTERSPEECH, 2015.

[6] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory
based recurrent neural network architectures for large vocabulary
speech recognition,” Computer Science, pp. 338–342, 2014.

[7] V. Peddinti, Y. Wang, D. Povey, and S. Khudanpur, “Low latency
acoustic modeling using temporal convolution and lstms,” IEEE
Signal Processing Letters, vol. PP, no. 99, pp. 1–1, 2017.

[8] M. Schuster and K. K. Paliwal, Bidirectional recurrent neural net-
works. IEEE Press, 1997.

[9] A. Graves, S. Fernndez, and J. Schmidhuber, Bidirectional LSTM
Networks for Improved Phoneme Classification and Recognition.
Springer Berlin Heidelberg, 2005.

[10] A. Graves, N. Jaitly, and A. R. Mohamed, “Hybrid speech recog-
nition with deep bidirectional lstm,” in Automatic Speech Recog-
nition and Understanding, 2014, pp. 273–278.

[11] Y. Zhang, G. Chen, D. Yu, K. Yao, S. Khudanpur, and J. Glass,
“Highway long short-term memory rnns for distant speech recog-
nition,” Computer Science, pp. 5755–5759, 2015.

[12] A. Zeyer, R. Schlter, and H. Ney, “Towards online-recognition
with deep bidirectional lstm acoustic models,” in INTERSPEECH,
2016, pp. 3424–3428.

[13] K. Chen and Q. Huo, Training deep bidirectional LSTM acoustic
model for LVCSR by a context-sensitive-chunk BPTT approach.
IEEE Press, 2016.

[14] K. Chen, Z. J. Yan, and Q. Huo, “A context-sensitive-chunk bptt
approach to training deep lstm/blstm recurrent neural networks for
offline handwriting recognition,” in International Conference on
Document Analysis and Recognition, 2016, pp. 411–415.

[15] S. Xue and Z. Yan, “Improving latency-controlled blstm acous-
tic models for online speech recognition,” in IEEE International
Conference on Acoustics, Speech and Signal Processing, 2017,
pp. 5340–5344.

[16] S. Hochreiter and J. Schmidhuber, Long short-term memory.
Springer Berlin Heidelberg, 1997.

[17] G. F. A., J. Schmidhuber, and F. Cummins, Learning to Forget:
Continual Prediction with LSTM. Istituto Dalle Molle Di Studi
Sull Intelligenza Artificiale, 1999.

[18] F. A. Gers and J. Schmidhuber, “Recurrent nets that time and
count,” in Ieee-Inns-Enns International Joint Conference on Neu-
ral Networks, 2000, pp. 189–194 vol.3.

[19] A. Graves and J. Schmidhuber, “Framewise phoneme classifica-
tion with bidirectional lstm and other neural network architec-
tures,” Neural Netw, vol. 18, no. 5-6, p. 602, 2005.

[20] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “Improv-
ing speech recognition by revising gated recurrent units,” INTER-
SPEECH, pp. 1308–1312, 2017.

[21] K. Cho, B. V. Merrienboer, D. Bahdanau, and Y. Bengio, “On
the properties of neural machine translation: Encoder-decoder ap-
proaches,” Computer Science, 2014.

[22] J. Chung, C. Gulcehre, K. H. Cho, and Y. Bengio, “Empirical eval-
uation of gated recurrent neural networks on sequence modeling,”
Eprint Arxiv, 2014.

[23] T. Masuko, “Computational cost reduction of long short-term
memory based on simultaneous compression of input and hid-
den state,” in Automatic Speech Recognition and Understanding,
2017.

[24] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper,
B. Catanzaro, J. Chen, M. Chrzanowski, A. Coates, and G. Di-
amos, “Deep speech 2: End-to-end speech recognition in english
and mandarin,” in ICML, 2015.

[25] A. Graves and F. Gomez, “Connectionist temporal classifica-
tion:labelling unsegmented sequence data with recurrent neural
networks,” in International Conference on Machine Learning,
2006, pp. 369–376.

[26] D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar,
X. Na, Y. Wang, and S. Khudanpur, “Purely sequence-trained
neural networks for asr based on lattice-free mmi,” in INTER-
SPEECH, 2016, pp. 2751–2755.

[27] K. Vesel, A. Ghoshal, L. Burget, and D. Povey, “Sequence-
discriminative training of deep neural networks,” Proc Inter-
speech, 2013.

[28] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmen-
tation for speech recognition,” Proc Interspeech, 2015.

[29] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker adap-
tation of neural network acoustic models using i-vectors,” in Au-
tomatic Speech Recognition and Understanding, 2014, pp. 55–59.

[30] H. Bu, J. Du, X. Na, B. Wu, and H. Zheng, “Aishell-1: An open-
source mandarin speech corpus and a speech recognition base-
line,” 2017.

[31] Z. Z. Dong Wang, Xuewei Zhang, “Thchs-30 : A
free chinese speech corpus,” 2015. [Online]. Available:
http://arxiv.org/abs/1512.01882

1792


