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Abstract

End-to-end deep learning has become a popular framework for
automatic speech recognition (ASR) tasks, and it has proven
itself to be a powerful solution. Unfortunately, network struc-
tures commonly have millions of parameters, and large compu-
tational resources are required to make this approach feasible
for training and running such networks. Moreover, many ap-
plications still prefer lightweight models of ASR that can run
efficiently on mobile or wearable devices. To address this chal-
lenge, we propose an approach that can reduce the number of
ASR parameters. Specifically, we perform Tensor-Train de-
composition on the weight matrix of the gated recurrent unit
(TT-GRU) in the end-to-end ASR framework. Experimental re-
sults on LibriSpeech data reveal that the compressed ASR with
TT-GRU can maintain good performance while greatly reduc-
ing the number of parameters.

Index Terms: tensor train decomposition, compression tech-
nique, end-to-end model, automatic speech recognition

1. Introduction

Speech recognition has certainly come a long way, from a sim-
ple machine that responds to a small set of sounds to highly so-
phisticated systems that recognize conversational speech. One
of the fastest growth areas is the market for mobile phones and
wearable devices. Currently, the state-of-the-art ASR system
has already reached a level that enables the user to conduct dia-
logues with computerized personal assistants (i.e., Apples Siri,
Amazons Alexa, Google Now, and Microsofts Cortana).

ASR technologies have also made remarkable progress.
Traditional ASR typically performs multi-level pattern recogni-
tion tasks based on hidden Markov models (HMM) that map the
acoustic speech waveform into a hierarchy of speech units such
as sub-words (phonemes), words, and strings of words (sen-
tences). Recently, end-to-end deep learning has become a pop-
ular framework for ASR tasks and has proven itself powerful
[1, 2, 3]. One of the important factors behind the popularity
of deep learning is the possibility of simplifying many compli-
cated hand-engineered models by letting DNNSs find their own
way in mapping from input to output spaces.

However, the overall network structure commonly consists
of multiple feed-forward and recurrent hidden layers. Most re-
current neural network (RNN) models are computationally ex-
pensive and have a huge number of parameters. Consequently,
large computational resources are required to make the system
feasible for training and running such networks. This limita-
tion can hinder us in constructing deep learning based ASR sys-
tems that can be fast enough for massive real-time inference or
small enough to be implemented in low-end devices like mo-
bile phones [4] and embedded systems with limited available
memory.

To address this challenge, we propose an approach that
could reduce the number of ASR parameters. Specifically,
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we perform Tensor-Train decomposition on the weight matrix
of the gated recurrent unit (TT-GRU) in the end-to-end ASR
framework.

2. Related Works

To bridge the gap between high-performance state-of-the-art
models and systems running under efficient computational and
memory costs, there is a trade-off between high-accuracy mod-
els and fast efficient models. A number of researchers have re-
ported various methods aimed at minimizing the accuracy loss
while maximizing the model’s efficiency.

Li et al. proposed learning a DNN with a small number of
hidden nodes by minimizing the Kullback-Leibler (KL) diver-
gence between the output distributions of the small-sized DNN
and a standard large-sized DNN [5]. Hinton et al. [6] success-
fully compressed a large deep neural network into a smaller
neural network by training the smaller neural network on the
transformed softmax outputs from the vast deep neural network.
Distilling knowledge from the larger neural network has also
been applied to recurrent neural network architecture by Tang
et al. [7]. Another approach by Denil et al. [8] utilized low-
rank matrix decomposition of the weight matrices. A Study
by Ba et al. [9] demonstrated that it is possible to train shal-
low neural nets to mimic deep models and perform similarly to
well-engineered complex deep convolutional architectures.

Moreover, Sainath et al. showed that parameters could be
reduced by low-rank matrix decomposition of the final layer
[10]. Xue at al. proposed reducing the model size while main-
taining improvements in accuracy by applying singular value
decomposition (SVD) to the weight matrices in DNN and then
restructuring the model based on the inherent sparseness of the
original matrices [11]. Denton et al. also showed that SVD of
the filter of the convolution neural net could reduce parameters
and speed up the setting [12]. Wang and colleagues succeeded
in compressing the entire coupling layer by combining SVD and
vector quantization to compress the acoustic model [13]. Prab-
havalkar et al. proposed a general recurrent model compression
that jointly compresses both recurrent and non-recurrent inter-
layer weight matrices. The proposed technique could reduce the
model size to a third of its original size [14].

A recent study by Novikov et al. [15] replaced the dense
weight matrices with Tensor Train (TT) format [16] inside a
convolutional neural network (CNN) model. By using TT-
format, they manage to compress the number of parameters sig-
nificantly and keep the model accuracy degradation as low as
possible. Tjandra et al. then showed that the parameters of a
neural network can be decomposed and compressed by tensor
train in MIDI music classification [17, 18]. However, to the best
of our knowledge, no study has focused on compressing more
complex neural networks with tensor-based representation for
ASR tasks.
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3. End-to-end ASR System

Our ASR system is built upon “Deep Speech 2” architecture. It
consists of multiple layers including many bidirectional GRU
layers and convolutional layers. Here, we perform Tensor-Train
decomposition on the weight matrix of the gated recurrent unit
(TT-GRU). Figure 1 illustrates the modification that was applied
to the basic architecture of Deep Speech 2 (left side) in the pro-
posed model (right side).

[ Softmax ] [ Softmax ]
% GRU % { GRU %
% GRU % [ > { TT GRU %
[ GRU ) | GRU )
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Figure 1: The basic architecture of Deep Speech 2 (left side)
and the proposed model (right side).

4. Tensor-Train Decomposition

In this section, we describe the details of our proposed approach
to compress GRU using the TT-format representation.

4.1. Tensor-Train (TT) format

We represent vectors with lowercase letters (e.g b), matrices
with uppercase letters (e.g W), and tensors with calligraphic up-
percase letters (e.g V). Each element from the vectors, matri-
ces and tensors is represented explicitly using indexing in every
dimension. For example: b(i) is the i-th element from vector
b, W (p, q) is the element of the p-th row and g-th column from
matrix W, and W(j1, .., ja) is the element at index (j1, .., jq)
of tensor W with d being the order of tensor V.

Based on the description in [15], we can assume that the d-
dimensional array (tensor) W is represented in TT format [16]
if for each k € {1, .., d} and for each possible value of the k-th
dimension index jr € {1,..,ni} there exists a matrix G[j]
such that all elements of VV can be computed as the following
equation:

W(j17j27"7jd—17jd) =
Gi[j1] - G2lja]...Ga-1[ja-1] - Galja]- (1)

For all matrices G [ji] related to the same dimension k, they
must be represented with size ry_1 X 1k, where ro and r4 must
be equal to 1 to retain the final matrix multiplication result as a
scalar.

In TT-format, we define a sequence of rank {r4}¢_, and
call them TT-rank from tensor V. The set of matrices G, =
{Gxljr]};}—,, where the matrices are spanned in the same in-
dex, is called TT-core. We can describe Equation 1 in detail
by enumerating the indices gx—1 € {1,..,7%—1} and qx €
{1,..,r,} in matrix Gy[j] across all k € {1, .., d}:

W(j17j27 "7jd—17jd) =
> Gilil(q, q1)--Galjal(ga-1,94)- ()

q05--,4d
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Figure 2: [llustration for Equation 1: Calculating an element
W(j1, .., jx) using the set of TT-cores { Gy, [jx] }i_1

By factoring the original tensor WV into multiple TT-cores
{Gr}{_,, we are able to compress the number of elements
needed to represent the original tensor size from szl ng to

d
2=t MKTR=1T k-

4.2. Representing Linear Transformation using TT-format

Nearly all parts of neural networks are composed of linear trans-
formations:
y=Wzx+0b, 3)

where W € RM*¥ is the weight matrix and b € R is the
bias vector. In most cases, matrix W has a much larger number
of parameters compared to the bias b. Therefore, we are able to
utilize TT-format in optimizing our neural networks by replac-
ing the weight matrix W with tensor W in TT-format [15].

We reilpresent TT-format for matrix W € RM™*¥ where
M =T[,_,mrand N = szl ng, as tensor ¥V by defin-
ing bijective functions f; : Z; — Z% and f; : Zy — Z4.
Function f; maps each row p € {1,..,M} into f;(p)
[i1, .., 4], and f; maps each column g € {1, .., N} into f;(¢) =
[71(q), .., ja(q)]- After we define such bijective functions, we
can access the value from matrix W (p, ¢) in tensor W with the
index vectors generated by f;(p) and f;(g). We transform Eq. 1
to represent a matrix W in TT-format into:

W(p,q) W(fi(p), f;(2)), “
W ([i1(p), -, ia(p)], [51()s - Ja(@)]) , (5)
G1lin(p), j1(9)] --Galia(p), ja(@)],  (6)

where for each k € {1, ..,d}:

Grlir(p), jr(q)] € RV
ir(p) € A{Ll,..,mz},
Je(q) € {1,.,nx}.

To represent linear transformation in Equation 3 with Equa-
tion 4-6, we need to reshape the vector input x into tensor X’
and the bias vector b into tensor B with order d to match our
tensor WW. The following equation calculates a similar oper-
ation to y(p) = W(p,:)z + b, where we map row index p to
vector [i1(p), .., 2a(p)] and enumerate all possible mappings for
all columns in matrix W:

Y (@1(p); - ia(p) = Y Gilir(p), ja)-Galia(p), jal-,

J1s-dd

X(]hv]d)+B(Zl(p)7vld(p)) (7)



Table 1: Fully Connected vs TT Layer: Running Time and Mem-
ory

Operation Time Memory
FC forward O(MN) O(MN)
TT forward O(dr? mmax(M N)) O(r max(M, N))
FC backward | O(M O(MN)
TT backward | O(d?r mmaX(M N)) | O(r®max(M, N))

We can control the shape of TT-cores {gk =1 by choos-
ing the factor M as {my}{_, and N as {nk}kzl as long
as the number of factors are equal between M and N. We
can also define the TT-rank {r)}¢_, and treat it as a hyper-
parameter. In general, if we use a smaller TT-rank, we get
more efficient models but also restrict the model’s ability to
learn more complex representation. If we use a larger TT-rank,
we get more flexibility to express our weight parameters but
we sacrifice our model’s efficiency. Table 1 compares the for-
ward and backward propagation time and memory complexity
between the fully connected layer and the TT layer in Big-O
notation [15]. We compare the fully connected layer having
matrix W € RM*Y with the TT layer having tensor W and
TT-rank {ry}¢_,. In the table, m denotes max({my }¢_,) and
7 denotes max({r }¢_o).

4.3. Compressing GRU with TT-format

As illustrated in Figure 3, the GRU hidden layer at time ¢ is
defined by the following equations [19]:

re = o(Warze + Whrhe—1 +br), (®)
ze = o(Waexe + Whhe—1 +b2), )
he = f(Wenme + Win(re © he—1) +by),  (10)
he = (1—2)®hi1+ 20 h, (11

where o(-) is a sigmoid activation function, f(-) is the tanh
activation function, 7, z; are the reset and update gates, Ry is
the candidate hidden layer values, and h; is the hidden layer
value at time-t. The reset gates control which previous hidden
layer values are useful for the current candidate hidden layer.
The update gates control the decision on whether to keep the
previous hidden layer values or to replace the current hidden
layer values with the candidate hidden layer values. GRU can
match LSTM’s performance, and its convergence speed some-
times surpasses that of LSTM despite having one fewer gating

layer [20].
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Figure 3: Gated Recurrent Unit

In this section, we apply TT-format to represent gated RNN.
Among several RNN architectures with a gating mechanism, we

chose GRU to be reformulated in TT-format because GRU has
a less complex formulation but similar performance compared
to LSTM. We call this model TT-GRU in this paper. Here, we
focus our attention on six dense weight matrices (W, Wh,,
Wz, Whzy Wan, Whi). The weight matrices Wy, W, Wen
€ RM*N are parameters for projecting the input layer to the re-
set gate, update gate, and candidate hidden layer, respectively;
Wi, Whzy Whi, € RM*M are parameters for projecting the
previous hidden layer to the reset gate, update gate, and candi-
date hidden layer, respectively.

We factorize M = []¢_, my, N = []¢_, ny and set TT-
rank as {ry }i_o. All weight matrices (War, Whr, Waz, Whs,
Wen, Whp) are substituted with tensor Warr, Whi, Wez, Wh,
Weahs Whp) in TT-format. Tensor Wy, Wy, Wiy, are repre-
sented by a set of TT-cores ({GZ™}¢_1, {GF*}¢_1, {GEMYe_ ),
where Vk € {1,..,d}, (GE",GF?, Gl € R™FXMeXTk—1XTk),
Tensor Why, Wh=, Whn are represented by a set of TT-cores
({glfcw}k 1, {glgz}k 1o {G1"}i=1), where VE € {1,..,d},
(GhT,GR= GrP € R™XMEXTE-1XTk)  We define bijective
function f;° to access row p from Wy, W, W, and function
£/ to access row p from Wh,., Wi, W, in the set of TT-cores.
We rewrite the GRU formulation to calculate r; in Equation 8

as
afT(p) = Z Wﬂ”‘ [.]h‘ 7.jd}) 'Xt (jlﬂ"y.jd)7
J1s--5dd
ai"(p) = D> Whe(E' (D), [1s - da]) - Heo1 (G, s Ga)
J1sdd
a;” = [a (1), ., a" (M)],
ai” = [al" (), ()]
re = o(af +at "+b). (12)

Next, we rewrite the GRU formulation to calculate z; in Equa-

tion 9 as
ach(p) = Z le p) []17' 7.7dD'Xt (j17~-7jd)7
J1
a?z(p) = Z th(f p)a[jla“vjd])'Htfl (j17“7jd)7
J1seesd
a;” = lai"(1),..,as" (M)],
al* = [a?Zu),..,a?Z(M)},

Finally, we rewrite the GRU formulation to calculate ﬁt in
Equation 10 as

ai(p) = > Wan(E(p), 1, dal) - X (r, - da)
J1s-3d
o) = D> Wial(E(0), [, - da])s
J15--:Jd
(Re (41, -+ Ja) - He1 (41, -+, Ja))
ai' = [af" (), " (D]
a?h _ [a?h(l)W’a?h(M)}?
he = f(af™ +al™ +by). (14)

After all 7, z; and h; are calculated, we can calculate h; in
Equation 11 with standard operations like element-wise sum
and multiplication.



In practice, we could assign different d for each weight ten-
sor as long as the input data dimension could also be factorized
into a d value. We could also assign a different TT-rank for each
tensor and treat this as our model hyper-parameter. However, to
simplify our implementation, we use the same TT-rank for both
input projection weight tensor and hidden projection weight
tensor. We also use the same factorization M = HZ:I mg

and N = szl ny, for all weight tensors in TT-GRU.

We do not substitute the bias vector b into tensor 3 because
the number of bias parameters is insignificant compared to the
number of parameters in matrix WW. In terms of performance,
the element-wise sum operation for bias vector b is also insignif-
icant compared to matrix multiplication between a weight ma-
trix and the input layer or previous hidden layer.

4.4. Initialization for TT-core parameters

Weight initialization is one of the most important tasks for
training deep neural networks. Especially for our RNN with
TT-format, which has many mini-tensors and several multipli-
cations, the TT-RNN will have a longer matrix multiplication
chain compared to a standard RNN, and the hidden layer value
will quickly saturate [21]. Therefore, we need to choose the ini-
tialization method carefully so that our proposed model starts
under a stable condition. In our implementation, we follow Glo-
rot initialization [21] to keep the same variance of the weights’
gradient across layers and time-steps to avoid the vanishing gra-
dient problem. We initialize every TT-core as follows:

Vk e {1,.,d}, Gx N(0,0k),

~

where o

2
(ni i) + (Mg - TK—1)

By choosing a good initialization, our neural network will be
able to converge faster and obtain better local minima. Based
on our preliminary experiments, we obtain better starting loss
at the first several epochs compared to the randomly initialized
model with the same o on a Gaussian distribution for all TT-
cores.

5. Experimental Set-up

The English speech corpus LibriSpeech corpus [22] is used in
this study as a task to evaluate our proposed model. Due to
time constraints, we only used the smallest “train-clean-100"
subset for training data, “dev-clean” subset for validation data,
and “test-clean” subset for test data as shown in Table 2.

Table 2: Libri Speech data [22]

subset hours speakers per-spk minutes
train-clean-100 | 100.6 251 25
dev-clean Sh 40 10
test-clean 5h 40 10

The speech utterances were segmented into multiple frames
with a 25-ms window size and a 10-ms step size. Then we ex-
tracted 23-dimension filter bank features using Kaldis feature
extractor [23] and normalized them to have zero mean and unit
variance.

The setting of the model parameters of the GRU baseline
is based on the paper of Deep Speech 2 [3], and the con-
figuration of the parameters of TT-GRU is determined based
on the tensor decomposition. For baseline GRU, we used the
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SGD algorithm, since it provides the best performance. How-
ever, our TT-GRU could not converge with SGD, and thus we
used the Adam algorithm to optimize the TT-GRU model pa-
rameters. We utilized TT-GRU implementation from https:
//github.com/androstj/tensor_rnn.

6. Experiment Results

Table 3 shows the performance of the proposed TT-GRU in
comparison with the baseline (uncompressed) GRU. Here, GRU
is denoted as “GRU-HF,” and TT-GRU is denoted as “TT-GRU-
HF-R,” where “H” means “hidden units,” “F” is the number of
hidden units, and “R” represents tensor-train rank. For exam-
ple, “GRU-H1510” means a GRU with 1510 hidden units, and
“TT-GRU-H4x8x6x8-R3” means a TT-GRU with a hidden unit
of 4x8x6x8 in the tensor-train rank 3 of the tensor-train format.

Table 3: Speech recognition performance of baseline GRU and
proposed TT-GRU.

Model Param Comp Val CER Test CER
GRU-HI1510 13M 100 20.03%  20.62%
TT-GRU

H4x8x6x8-R3 | 11k 0.08 27.57%  27.21%
H4x8x6x8-R5 | 22k 0.16 23.76%  23.40%
H4x8x6x8-R7 | 37k 0.27 22.68%  23.73%

The baseline model is a GRU with 1510 hidden units. Our
proposed model has a 4x8x6x8 output shape and TT-GRU of
tensor train rank (3, 5, 7). No language model was applied, and
thus a character error rate (CER) was used for the evaluation
function. All of these models have similar performances based
on the negative log-likelihood and accuracy in the test set. How-
ever, the best system of our proposed model could drastically
reduce the parameters from 13M to 37k. Overall, this reduction
was about 99% in the converted GRU layer and about 60% in
the entire model. This reveals that the performance could be
maintained while reducing the number of parameters.

Importantly, unlike several published systems using these
benchmarks, our proposed system does not involve a language
model. Therefore, the results reported in the paper could not
reach state-of-the-art performance. Nevertheless, the results are
still convincing as evidence of the proposed framework’s effec-
tiveness.

7. Conclusions

In this paper, we demonstrated an efficient and compact neu-
ral network model using TT-format representation for a CTC-
based end-to-end automatic speech recognition task. By using
TT-format, we were able to represent dense weight matrices in-
side the RNN layer with multiple low-rank tensors. We eval-
uated our proposed model on LibriSpeech data. Our proposed
TT-GRU is able to compress the number of parameters signifi-
cantly while retaining high model performance and accuracy at
the same time. In the future, we will elaborate the TT-format in
other parts of the network. Furthermore, we will incorporate a
language model on top of the CTC layer of the proposed model
and evaluate performance using a larger dataset.
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