
Effectiveness of Dynamic Features in INCA and Temporal Context-INCA

Nirmesh J. Shah and Hemant A. Patil

Speech Research Lab,
Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT),

Gandhinagar, India-382007
{nirmesh88 shah and hemant patil}@daiict.ac.in

Abstract

Non-parallel Voice Conversion (VC) has gained significant at-
tention since last one decade. Obtaining corresponding speech
frames from both the source and target speakers before learn-
ing the mapping function in the non-parallel VC is a key step
in the standalone VC task. Obtaining such corresponding pairs,
is more challenging due to the fact that both the speakers may
have uttered different utterances from same or the different lan-
guages. Iterative combination of a Nearest Neighbor search step
and a Conversion step Alignment (INCA) and its variant Tem-
poral Context (TC)-INCA are popular unsupervised alignment
algorithms. The INCA and TC-INCA iteratively learn the map-
ping function after getting the Nearest Neighbor (NN) aligned
pairs from the intermediate converted and the target spectral
features. In this paper, we propose to use dynamic features
along with static features to calculate the NN aligned pairs in
both the INCA and TC-INCA algorithms (since the dynamic
features are known to play a key role to differentiate major pho-
netic categories). We obtained on an average relative improve-
ment of 13.75 % and 5.39 % with our proposed Dynamic INCA
and Dynamic TC-INCA, respectively. This improvement is also
positively reflected in the quality of converted voices.

Index Terms: INCA, Temporal Context (TC)-INCA, dynamic
features, alignment, Voice Conversion.

1. Introduction
Voice Conversion (VC) is a technique that maps the perceived
speaker identity from a source speaker to a given target speaker
without changing the message contained in a speech signal [1].
VC broadly can be categorized into parallel (if both the speak-
ers have spoken the same utterances) and non-parallel cases
(if both the speakers have spoken different utterances from a
same language or different language). Stand-alone VC tech-
niques that are based on Gaussian Mixture Model (GMM) [2,3],
frequency warping (FW) [4, 5], exemplar [6] and Deep Neu-
ral Network (DNN) [7–9] requires the aligned spectral features
before learning the mapping function. In the VC literature, it
has been shown that the alignment accuracy clearly affects the
quality of converted speech signal [10–12]. Hence, the accurate
aligned spectral features from both the source and the target
speakers’ training speech database are required. On the other
hand, recently proposed VC techniques that are based on adap-
tation [13] and generative model [14] avoided the need for such
an alignment. However, in order to apply standalone VC sys-
tems, alignment is an unavoidable task. The alignment is more
challenging in text-independent case (i.e., non-parallel data),
since both the speakers have uttered different utterances, which
is the most obvious realistic scenario.

Dynamic Time Warping (DTW) algorithm is used for the

alignment task in the parallel VC task [15]. If the text ut-
terances corresponding to the training speech data are avail-
able, the phoneme boundaries can be estimated using the forced
Viterbi [16] or Spectral Transition Measure (STM)-based seg-
mentation algorithm [17]. Recently, the text information have
been used to generate speaker-independent phoneme posterior
probability features, and used for non-parallel VC [18, 19].
However, it requires a separate training of Automatic Speech
Recognition (ASR). Furthermore, developing robust ASR re-
quires a huge amount of transcribed speech data from both the
source and target speakers. In addition, publicly available ASR
can be used for this task. However, it may not work in the
cases where the low resource language is involved. Among var-
ious alignment techniques reported in the literature, the unsu-
pervised alignment algorithms for the non-parallel data case is
the Iterative combination of a Nearest Neighbor search step and
a Conversion step Alignment (INCA) algorithm [20, 21].

The unsupervised INCA iteratively learns the mapping
function that uses the nearest neighbor (NN) aligned features
between the intermediate converted spectral features and the tar-
get spectral features [20,21]. The % phonetic accuracy (PA) re-
ported in the literature for the CMU-ARCTIC database for the
non-parallel case is around 10 %, which is very less [22]. To
overcome this issue, Temporal-Context (TC) INCA algorithm
was proposed [22], which tries to incorporate the contextual in-
formation. Furthermore, since speech is a sequential data, ex-
tracting the contextual features from the speech, captures the lo-
cal features (including coarticulation) and preserves the crucial
harmonics [23,24]. It is well known in the speech literature that
the surrounding acoustic context affects the human speech per-
ception [25–27]. Recently, researchers have tried to identify the
underlying representations in the primary auditory cortex and
secondary auditory cortex, and have examined the information
modulated by varying the context in the area of the neuroscience
of speech perception [28].

In this paper, we propose to use the dynamic features that
incorporates the contextual information in the INCA. In particu-
lar, it extends non-parallel VC using relatively moderate modifi-
cations of existing frame-alignment algorithms. Furthermore, it
has been found in speech perception literature that the dynamic
features also play an important role to differentiate various pho-
netic categories, such as vowels, nasals, fricatives, stops, etc.
[29–32]. In this paper, we propose to use dynamic features
along with the static features for calculating the NN in the INCA
and TC-INCA. In addition, we have also discussed the conver-
gence behavior of our proposed algorithm. We have done rel-
ative analysis of % PA with the proposed dynamic features in
INCA and TC-INCA. Furthermore, we have developed VC sys-
tems on the CMU-ARCTIC database using the aligned spectral
feature-pairs obtained via different alignment algorithms [33].
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2. Proposed Dynamic Features for INCA
and TC-INCA

2.1. INCA Algorithm

INCA iteratively performs three steps, namely, a nearest neigh-
bor search step, training of mapping function using Joint Den-
sity Gaussian Mixture Model (JDGMM)-based VC and the
transformation until convergence. Let X = {xk}Nx

k=1, Y =

{yj}Ny

j=1 ∈ Rd be the spectral features related to non-parallel
corpus from the source and the target speakers, respectively.
The alignment procedure is given below using asymmetric-1
variant of the INCA algorithm since it is considered relatively
the best among all other variants of INCA algorithm [20].

1. Initialization: At tth iteration, auxiliary vector set,
i.e., (Ft−1({xk}) = {x′

k}) represents an intermedi-
ate acoustic space of converted spectral features of pre-
vious iteration. The mapping function is initialized as
F0(x) = {xk}, which is called trivial initialization.

2. NN search: At each iteration for each vector x
′
k, the in-

dex of its corresponding NN vector in Y is estimated and
stored in p(k). Similarly, for each vector yj , its corre-
sponding NN vector is found from {x′

k} and stored its
index in q(j).

pt(k) = arg min
j

d(Ft−1(xk), yj),

qt(j) = arg min
k

d(yj ,Ft−1(xk)),
(1)

where d(.) is the Euclidean distance.

3. Training: The spectral feature vectors given by
{xk, yp(k)} and {xq(j), yj} are concatenated and trained
using the JDGMM-based method [2] and the mapping
function Ft(.) is obtained using the GMM-based tech-
nique with MMSE-based conversion [2].

4. Transformation: The auxiliary vector set X
′

is updated
after applying the mapping function Ft(), i.e.,

x
′
k = Ft(xk), ∀k. (2)

5. Convergence Checking: If the converted spectral fea-
tures are very near to the target spectral features in
mean square error (MSE) sense then the convergence is
achieved, otherwise go to the step 2. The MSE between
intermediate converted vectors and the target vectors is
given by [20]:

ET =
1

Nx + Ny

( Nx∑

k=1

‖Ft(xk)− ypt(k)‖2

+

Ny∑

j=1

‖yj −Ft(xk)qt(j)‖
2

)
,

(3)

where ||.||2 =
∑

<n> |x(n)|2 (i.e., square of l2 norm).
The empirical and theoretical convergence of the Et was
shown in [20], [21], respectively.

2.2. Proposed Dynamic Features for INCA

Speech signal consists of various basic speech sound units,
which are called as phonemes. These sounds and their features

differ both in time and spectral characteristics [29]. The dy-
namic features, such as the change of distribution of spectral
energy and temporal characteristics will play a vital role to dis-
criminate major phonetic categories, such as nasals, stops, vow-
els, fricatives, etc. [32, 34]. In this paper, we propose to use the
dynamic features to capture the contextual information that is
present across the frames by taking longer contextual frames as
given in [22]. The dynamic feature is given by [34]:

∆xk =

∑T/2
i=1 i(xk+i − xk−i)

2
∑T/2

i=1 i2
, (4)

where T is even and contextual window length, Wd = T + 1,
which is taken at the current frame, i.e., xk by considering T/2
frames from the left and right side. Dynamic features are calcu-
lated and concatenated along with the static features. Hence, the
new set of feature vectors is defined as Xk = [xT

k ,∆xT
k ]T and

Yk = [yT
k ,∆yT

k ]T . Let X = {Xk}N̂x
k=1, Y = {Yj}N̂y

j=1 ∈ Rd,
where N̂x ≤ Nx, N̂y ≤ Ny are the number of feature vectors
from source and target speakers, respectively. Here, the cost
function which is given by eq. (3) is modified from [20, 22] for
our new set of feature vectors and it is given by:

Et =
1

N̂x + N̂y

( N̂x∑

k=1

‖Ft(Xk)− Ypt(k)‖2

+

N̂y∑

j=1

‖Yj −Ft(Xk)qt(j)‖
2

)
,

(5)

where F(Xk) is the transformation function [2] and the
JDGMM is trained for joint feature vectors, which is obtained
by concatenating the static and the dynamic features from both
the source and target speakers. The cost function given by eq.
(5) cannot be solved using the gradient descent algorithm due
to its dependency on the mapping function, i.e., F(.) [35]. In
such a scenario, alternating minimization technique is used. It
is well known optimization technique that iteratively minimizes
the cost function depending on more than one variables [36,37].
Hence, dynamic INCA algorithm can be defined as an optimiza-
tion problem, aiming to minimize the following cost:

{p∗, q∗,F∗} = arg min
{F,p,q}

E(p, q,F), (6)

where p, q are the warping paths obtained after NN step 2 in
the INCA. This joint optimization can be split into two sepa-
rate minimization problems, which will be solved iteratively for
t = 1, 2, .... Hence, at iteration t, the algorithm (i.e., dynamic
features in INCA (D-INCA) algorithm) is given by:

{pt, qt} = arg min
{p,q}

E(p, q,Ft−1), (7)

Ft = arg min
F

E(pt, qt,F). (8)

2.3. Convergence of Proposed D-INCA Algorithm

Due to alternating minimization nature of our training approach
which is given by eq. (7) and eq. (8), it is clearly seen that the
following inequality will always hold:

Et = E(pt, qt,Ft) ≤ E(pt, qt,Ft−1)

≤ E(pt−1, qt−1,Ft−1) = Et−1, ∀t.
(9)

Here, the cost function Et is nothing but the Mean Square Er-
ror (MSE) and the transformation function is also given by the
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(a) (b) (c)
Figure 1: Waterfall plot of spectrum of a female twin-pair (both at the age of 27 years) uttering Hindi word /achanak/ (i.e., “Suddenly”)
(a) source (b) target speaker, and (c) Mean Square Error (MSE).

MMSE criteria as given in [2]. Hence, the above mentioned
inequality will be non-increasing and bounded below, the sub-
sequence Et must converge monotonically as per the Bolzano-
Weierstrass theorem [38]. However, convergence to the global
minimum is not guaranteed as our cost function is nonconvex.
Hence, it will converge to a local minimum. In particular, con-
vergence is in MSE sense than pointwise since source speaker
can not be able to exactly match the spectral representation of
target shape. In this context, we have taken the same utterance
from two identical female twins speakers (a twin speaker-pairs)
who are having almost identical speaker characteristics (as they
look and sound perceptually very similar) [39]. It is observed
from Figure 1 that even if they perceptually sound similar, their
time-varying spectral representations is different and hence, the
MSE in between their spectrum is not zero at every point as
shown in Figure 1 (c).

2.4. Proposed Dynamic TC-INCA Algorithm

Similar to D-INCA, we propose to extend the idea of us-
ing dynamic features in the TC-INCA. The TC-INCA tries
to use the Temporal Context information for finding NN
aligned pairs in the INCA algorithm [22]. In particular,
this is achieved by concatenating the current spectral fea-
ture vector with the (T/2) successive feature vectors in both
the sides, i.e., Xk = {xT

k−T/2, ..., xk, ..., x
T
k+T/2}, Yk =

{yT
k−T/2, ..., yk, ..., y

T
k+T/2} for a given contextual window

length (i.e., Wc = T + 1).

Figure 2: Empirical convergence analysis for (a) INCA (b) D-
INCA (c) TC-INCA, and (d) D-TC-INCA.

The details of TC-INCA is given in [22]. Similarly,
the spectral features will be considered along with its
dynamic features and the context for finding the NN fea-
ture pairs for the proposed D-TC-INCA. In particular, the
cost function given by eq. (5) is the same except, Xk =
[xT

k−T/2,∆xT
k−T/2, ..., x

T
k ,∆xT

k , ..., x
T
k+T/2,∆xT

k+T/2]T ,
Yk = [yT

k−T/2,∆yT
k−T/2, ..., y

T
k ,∆yT

k , ..., y
T
k+T/2,∆yT

k+T/2]T

and the transformation functions can be given by:

Ft(Xk) = [F(xk−T/2)T ,F(∆xk−T/2)T , ...,F(xk)T ,

F(∆xk)T , ...,F(xk+T/2)T ,F(∆xk+T/2)T ]T ,

(10)

where ∆xk is calculated over the contextual window length
WD using eq. (4) and the TC is taken over the window length
WC . The convergence for D-TC-INCA can be easily adapted
from the convergence characteristics of D-INCA algorithm as
discussed above. Empirical convergence also observed in D-
INCA and D-TC-INCA for all the speaker-pairs. Among which
the empirical convergence for one of the randomly selected
speaker-pairs is shown in Figure 2. Cost function in all the pro-
posed variants of INCA is different and hence, range of MSE
will be different in all the cases. Still monotonically decrement
in MSE sequence is clearly visible in all the cases.

2.5. Analysis of Phonetic Accuracies

In this paper, we converted the ground truth labeling, which is at
phone-level to the frame-level labeling for the CMU-ARCTIC
database [33]. The ground truth for the CMU-ARCTIC
database is developed by training the speaker-dependent HMM
model over 1132 utterances [33]. After alignment, using INCA
algorithm and the proposed algorithm (i.e., D-INCA), if the
aligned pairs are coming from the same phone label then it is
considered as hit and if not then false. From this, % Phone Ac-
curacy (PA) is defined as [20]:

% Phone Accuracy =
Total no. Hits

Total no. Frames
× 100, (11)

where Total no. Frames = Total no. Hits + Total no. Falses.
Table 1 shows the % PA obtained using 40 non-parallel utter-
ances from the CMU-ARCTIC database for each speaker-pairs
(namely, BDL-RMS (male-male), BDL-SLT (male-female),
CLB-RMS (female-male) and CLB-SLT (female-female)) us-
ing eq. (11). We have considered various different contextual
length for calculating dynamic features in D-INCA algorithm,
such as WD = {3, 5, 7, 9, 11}. It is observed from Table 1
that the D-INCA (where dynamic features are calculated across
three frames, i.e., WD3) performs better than the INCA. Thus,
dynamic features obtained over the WD3 is used for calculating
the D-TC-INCA. We obtained clear improvement in % PA as
the WC increases in both TC-INCA and D-TC-INCA. In par-
ticular, we have observed on an average relative improvement of
5.39 % with our proposed D-TC-INCA over TC-INCA. In ad-
dition, it is clear from the Table 1 that for each considered con-
textual window length (namely, WC = {3, 5, 7, 9, 11}), there
is a clear improvement in % PA with D-TC-INCA over the TC-
INCA. In all the cases, the best performing system (in terms of
% PA) is selected for the further development of VC system.
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Table 1: % PA analysis after alignment for different VC systems w.r.t. the different contextual window length

Speaker-Pair INCA D-INCA TC-INCA D-TC-INCA
WD3 WD5 WD7 WD9 WD11 WC3 WC5 WC7 WC9 WC11 WC3 WC5 WC7 WC9 WC11

M-M 25.87 28.94 23.70 17.74 10.74 6.10 28.42 28.80 30.71 31.76 35.31 30.90 31.85 32.51 34.33 35.31
M-F 20.66 24.86 22.89 16.59 11.50 8.11 23.75 26.66 29.18 28.55 31.32 27.09 28.32 29.33 30.98 33.16
F-M 19.24 23.06 25.37 19.78 15.32 8.94 24.40 26.0 27.53 27.66 29.38 23.51 26.16 27.49 29.56 31.01
F-F 32.46 36.00 28.32 20.07 14.85 11.20 36.58 39.34 40.57 43.17 44.7 38.2 39.92 41.26 43.99 44.26

3. Experimental Results
In this paper, various VC systems have been developed using
the aligned features obtained by INCA and proposed dynamic
INCA (D-INCA). 40 non-parallel utterances for each speaker-
pairs from the CMU-ARCTIC database have been used. The
state-of-the-art methods, namely, Joint Density (JD) GMM-
based VC has been selected among the available various VC
techniques, since it uses the conditional expectation, which is
the best minimum mean square error (MMSE) estimator [2,40].
Hence, it leads to the minimum error between converted and the
target spectral features. 25-D Mel Cepstral Coefficients (MCC)
(including the 0th coefficient) and 1-D F0 per frame (with
25 ms frame duration and 5 ms frame shift) have been used.
The number of mixture components has been varied, for exam-
ple, m=8,16, 32, 64, and 128. The system having optimum Mel
Cepstral Distortion (MCD), is selected for the subjective eval-
uation. Here, F0 contour is transformed using Mean-Variance
(MV) transform method [3].

3.1. Results

We have selected Mean Opinion Score (MOS) and XAB tests
for subjective evaluations of speech quality and speaker simi-
larity (SS) of converted voice, respectively. Both the subjective
tests are taken from the 19 subjects (with no known hearing im-
pairments with the age between 23 to 30 years), 6 females and
13 males from total 608 samples. In MOS test, subjects were
asked to evaluate randomly played utterances for the speech
quality (i.e., how natural is the converted voice ?) on the scale
of 1 to 5 (1 very bad to 5 very good). Figure 3 shows the de-
tailed MOS analysis for the developed VC systems along with
95 % confidence interval. On an average, effectiveness of the
proposed D-INCA over INCA and the proposed D-TC-INCA
over the TC-INCA is visible in Figure 3. The poor performance
of the proposed algorithm for F-F case may be due to spectral
resolution problem associated with female speech [41].

Figure 3: MOS analysis for VC systems.
In XAB test, the listeners were asked to select from the

randomly played A and B samples (generated with INCA and
TC-INCA, and the proposed D-INCA, and D-TC-INCA) based
on the SS with reference to the actual target speaker’s speech
signal X. We found equal preference for both the systems as
subjects were unable to distinguish at all, which system is per-
forming better in terms of SS. This result indicates important
observation that the accurate alignment may not lead to the bet-

ter converted voice in terms of SS. However, it will definitely
lead to the better speech quality of converted voice.

Figure 4: MCD analysis of VC systems.
The traditional Mel Cepstral Distortion (MCD) is used for

the objective evaluations of various VC systems [3]. Our pro-
posed D-TC-INCA and the D-INCA are performing better (i.e.,
relatively lesser MCD) compared to the TC-INCA and the
INCA as shown in Figure 4.
Table 2: PCC between % PA and MCD with the subjective score

PCC MOS MCD
% PA 0.36 -0.8

Table 2 presents the analysis of Pearson Correlation Coefficient
of % PA with the MOS and the MCD. We obtained 0.36 and -
0.8 correlation of % PA with the MOS and the SS, respectively.

4. Summary and Conclusions
In this paper, we proposed to use the dynamic features in the
INCA. We formulated the updated cost function for the pro-
posed D-INCA. The dynamic features calculated using lesser
context (in particular, with frame context length WD3) per-
forms better compared to the longer context (i.e., with w =
5, 7, 9, 11). In addition, we also discussed the convergence of
D-INCA. Moreover, we also propose to use this dynamic fea-
tures along with the TC-INCA by considering the different con-
textual window length WC . We obtained on an average rela-
tive improvement of 13.75 % and 5.39 % with our proposed
Dynamic INCA and Dynamic TC-INCA (w.r.t. the INCA and
TC-INCA), respectively. This better performance of proposed
approach may be due to its ability to exploit representation of
speaking style via local vs. global coarticulations, that is cap-
tured using localized dynamic features and several contextual
frames, respectively. In all the cases, the best performing sys-
tems in terms of % PA is selected for the further development of
VC system. In addition, it has been observed that the VC sys-
tems that are developed using D-INCA and D-TC-INCA per-
form better than the INCA and the TC-INCA in terms of qual-
ity of converted voice from the subjective and objective eval-
uations. Since similar to INCA, our proposed algorithm does
not require phonetic information, and hence, in the future, we
would like to extend this work to the cross-lingual VC systems.
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