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Abstract
The infant cry classification is a socially-relevant problem
where the task is to classify the normal vs. pathological cry sig-
nals. Since the cry signals are very different from the speech
signals in terms of temporal and spectral content, there is a
need for better feature representation for infant cry signals.
In this paper, we propose to use unsupervised auditory filter-
bank learning using Convolutional Restricted Boltzmann Ma-
chine (ConvRBM). Analysis of the subband filters shows that
most of the subband filters are Fourier-like basis functions.
The infant cry classification experiments were performed on
the two databases, namely, DA-IICT Cry and Baby Chillanto.
The experimental results show that the proposed features per-
form better than the standard Mel Frequency Cepstral Coef-
ficients (MFCC) using various statistically meaningful perfor-
mance measures. In particular, our proposed ConvRBM-based
features obtained an absolute improvement of 2 % and 0.58 %
in the classification accuracy on the DA-IICT Cry and the Baby
Chillanto database, respectively.
Index Terms: Infant cry classification, auditory filterbank
learning, ConvRBM.

1. Introduction
Humans cry to express a range and degree of emotions, such as
from happiness after passing a tough exam or meeting a beloved
one to grief after the death of a person or difficult situations in
life [1]. On the whole, the crying is not just a simple reaction to
any feeling or emotional state but rather a multifaceted behavior
that can offer clues to how we process and regulate our feelings,
and how we experience the world around us [1]. In humans, in-
fants communicate their need, such as feeding, distress or pain
by crying [2]. Intra-individual variation in the infant cry sounds
is known to encode information on the condition, emotional sta-
tus, needs and the degree of urgency. Based on the perception of
the cry, parents or caretakers empirically try to understand the
reason for the crying and even identify their newborn [2]. The
infant cry classification is very helpful to the parents, caretak-
ers, and pediatricians in the diagnosis of a pathology at an early
stage. This may be beneficial to reduce or completely eliminate
symptoms of a pathology. Many times, addressing pathology at
an early stage of infant development leads to severe conditions
including the death.

The research work in this direction is also important to iden-
tify the appropriate reasons for sudden infant death syndrome
(SIDS) [3], [4]. The first study of SIDS case was analyzed
in [5]. The SIDS is sudden unexplained death of a child less
than one year of age that remains unexplained even after a com-
plete forensic investigation [6]. The early studies suggest that
infants who die from SIDS are born with brain abnormalities (in
the specific brain region called medulla oblongata that helps in
control functions, such as breathing, and blood pressure [7]) or

physiological defects [6]. Hence, the study of infant cry anal-
ysis will be very much helpful to prevent SIDS cases. Another
important social relevance is in the families where literacy level
is lower and access to good hospitals is difficult specifically in
remote villages. The infant cry classification if implemented in
mobiles devices (since mobiles finds its usage in wide strata of
society) can be beneficial in initial detection of the pathology in
the infants through cry signals.

The are many signal processing challenges to analyze the
infant cry signals, such as difficulties in extraction of source ex-
citation and vocal-tract related features, scarcity of pathological
cry samples, and unbalanced data for classification. From a sig-
nal processing perspective, our goal is to classify whether the
infant is crying due to pain, hunger or some medical disease
collectively called as pathology. To date, there is no standard
publicly available database for infant cry classification. Many
researchers collected their own data including our Speech Re-
search Group at DA-IICT [8], [9]. Few studies used Baby
Chillanto infant cry database [10] while most of the recent stud-
ies used their own corpus. The early work includes analysis of
different features for infant cry signals [11]. The classification
of full-term and preterm infant cry is presented in [12]. Re-
cently, an automatic cry segmentation system is proposed as
a pre-processing step in the infant cry classification task [13].
Other notable studies for infant cry classification include the
works reported in [14–21]. The detailed discussion on the topic
of infant cry classification is found in [7] and in [22], the first
Ph.D. thesis from India in this area.

Most of the earlier studies used Mel Frequency Cepstral
Coefficients (MFCC) as auditory-based features (to the best of
authors’ knowledge). Various handcrafted features are explored
in [22] for classification of infant cries. Recently, representation
learning (RL) is very popular to learn meaningful feature repre-
sentation directly from the raw audio signals [23]. Various ap-
proaches were proposed for RL that shows significant improve-
ments compared to handcrafted features, such as MFCC [24].
The objective of this paper is to use our proposed Convolutional
Restricted Boltzmann Machine (ConvRBM) for auditory-like
filterbank learning from the raw audio signals [24], [25]. We
used two databases, namely, (1) Baby Chillanto [10] and (2)
DA-IICT Cry database collected by our group [8]. The exper-
imental results showed an improved performance with the pro-
posed feature representation compared to the baseline MFCC
feature set.

2. Auditory Filterbank Learning using
ConvRBM

ConvRBM is an undirected probabilistic graphical model used
for representation learning. It has two layers, namely, a visi-
ble layer and a hidden layer [24]. The input to a visible layer
(denoted as x) is a cry signal of length n-samples. The hid-
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den layer (denoted as h) is divided into K-groups (i.e., number
of subband filters). Each group weight has filter length of m-
samples. The weights of ConvRBM are shared between visible
and hidden units in each group [24]. The hidden bias is denoted
as bk for the kth group. The convolutional response for the kth

group is given as:

Ik = (x ∗ W̃k) + bk, (1)

where x = [x1, x2, ..., xn] are samples of the infant cry signal,
Wk = [wk

1 , w
k
2 , ..., w

k
m] is a weight vector (i.e., kth subband

filter) and W̃ indicates a flipped array [24]. Here, we used the
noisy leaky rectifier linear units (NLReLU) for the inference
compared to our earlier works [24]. Earlier, LReLU is proposed
to avoid the limitations of ReLU, such as zero gradient for neg-
ative inputs and unbounded output for very large inputs [26].
With an NLReLU, the sampling equations for hidden and visi-
ble units are given as:

hk ∼ max(0,Jk) + α ·min(0,Jk),

xrecon ∼ N
(

K∑

k=1

(hk ∗Wk) + c, 1

)
,

(2)

where Jk = Ik + N(0, σ(Ik)) with N(0, σ(Ik)) is a Gaus-
sian noise with mean zero and sigmoid of Ik as a variance. α
is a leaky parameter which is generally set to 0.01 as suggested
in [26] and c is a visible bias which is also shared among the
visible units. In ConvRBM training, an annealed dropout is ap-
plied before sampling the hidden units in both the positive and
negative phase of contrastive divergence (CD) learning. Our
earlier works showed that the use of annealed dropout (first pro-
posed in [27]) resulted in an improved performance in speech
recognition [28] and audio classification [29]. In an annealed
dropout training, the dropout probability of the hidden units in
ConvRBM is gradually decreased over the training period. The
parameters of ConvRBM are updated using an Adam optimiza-
tion method [30].

After ConvRBM is trained, the pooling is applied in the
temporal-domain to reduce the representation of ConvRBM fil-
ter responses. The pooling operation reduces the temporal res-
olution fromK×n samples to theK×F frames. Logarithmic
nonlinearity compresses the dynamic range of features. The
block diagram for feature extraction procedure is shown in Fig-
ure 1. During feature extraction stage, we have used an absolute
nonlinearity |Ik| as an activation function of the hidden units.

Figure 1: Feature extraction using ConvRBM (after training):
(a) Infant cry signal, (b) and (c) responses from the convolu-
tional layer and absolute nonlinearity, respectively, (d) pooling,
and (e) logarithmic compression.

3. Analysis of Infant Cry Signals
3.1. Analysis of Subband Filters and Frequency Scale

The subband filters learned from the DA-IICT Cry and Baby
Chillanto database are shown in Figure 2. We have also shown
the subband filters obtained from the TIMIT speech database.
It is important to note an intriguing observation that these sub-
band filters were learned from only 37 minutes and 50 seconds
duration of cry signals from the Baby Chilanto and 30 minutes
of cry signals from the DA-IICT Cry database (such scarcity
of larger database is all the more case in the medical scenar-
ios [31]). Thus, it shows the applicability of our proposed model
even in the very small database scenarios. The time-domain
subband filters are significantly different than the one for nor-
mal TIMIT speech database. The subband filters of the infant
cry databases contain more Fourier-like basis functions. The
analysis of the frequency-domain subband filters revealed that
many subband filters are not localized and contain harmonic
structures. This may be due to the harmonic nature of the infant
cry signals revealed via ten distinct cry modes in narrowband
spectrograms [7], [15]. These results also justify the observa-
tions in [32] for animal vocalizations that are harmonic in na-
ture. On comparing the subband filters learned from the two
different databases, the subband filters from the baby Chillanto
database has more lower frequency filters. However, most of
the subband filters are similar in shape.

The frequency scales obtained using ConvRBM are com-
pared with the standard auditory frequency scales in Figure
3. Unlike the frequency scale obtained through the speech
database [24], here we observed two linear segments in the fre-
quency scale, from 0 to 1 kHz and from 1 kHz to 3 kHz. After
3 kHz, it is nonlinear and follows the ERB, and Bark scales.
However, the frequency scale from the DA-IICT Cry database
is more away from the standard scales. The difference in the fre-
quency scales of both the databases is may be due to variabilities
in the cry signal production mechanism through language per-
ception (Indian languages vs. English in the Baby Chillanto),
data recording conditions, background noise, channel charac-
teristics, microphone specifications, etc.

4. Experimental Setup
4.1. Databases

The experiments were performed with two databases described
as follows:
4.1.1. DA-IICT Cry Database

The DA-IICT Cry database was collected as a part of the DST
fast-track scheme for young scientist project, “Development of
Infant Cry Analyzer using Source and System Features” [8].
The sampling frequency of the original recordings was 12 kHz,
quantized at 16-bit PCM. For our experiments, we resample it
to 11.025 kHz since at a later stage we will compare the results
with another database. The statistics of DA-IICT Cry database
is shown in Table 1. The healthy cry signals consist of nor-
mal and hunger cry signals. The pathological cry includes two
types of pathology, namely, asphyxia (also called as Hypoxic
Ischemic Encephalopathy (HIE)) and asthma.

4.1.2. Baby Chillanto

Baby Chillanto infant cry database was developed by the
recordings conducted by medical doctors which is a property
of INAOE-CONACyT, Mexico [10]. Each cry signal was seg-
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Figure 2: The subband filters trained on DA-IICT Cry (Panel I), Baby Chillanto (Panel II), and TIMIT (Panel III) databases, respec-
tively: (a)-(c) in the time-domain, (d)-(f) corresponding frequency responses.
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Figure 3: Analysis of the auditory frequency scales.

mented into one-second duration (which represent one sample)
and are grouped into five categories as shown in Table 1. Since
the sampling rate of cry signals is different in all the categories,
we kept the sampling rate of 11.025 kHz for all the categories.
Two groups were formed for binary classification of healthy vs.
pathology. Healthy cry signals include three categories, namely,
normal, hungry, and pain resulting in 1049 cry samples. Pathol-
ogy cry signals include two categories, namely, asphyxia, and
deaf resulting in 1219 cry samples.

Table 1: Number of samples contained in DA-IICT Cry
database (D1) and Baby Chillanto (D2)

Class Category Samples in D1 Samples in D2

Healthy
Normal 793∗ 507
Hungry - 350

Pain - 192

Pathology
Asphyxia 215 340
Asthma 182 -

Deaf - 879
∗Samples include both the normal and hunger cry

4.2. Training of ConvRBM and Feature Extraction

The ConvRBM is trained using an annealed dropout with
dropout probability p=0.3 that decayed to zero (i.e., p = 0) dur-
ing the training. The learning rate was chosen to be 0.001 and
decayed according to the learning rate schedule as suggested
in [30]. The moment parameters of Adam optimization cho-
sen to be β1=0.9 and β2=0.999. The model is trained using
40 subband filters (i.e., K) with window length m= 88 sam-
ples (i.e., 8 ms). After the ConvRBM was trained, the features
were extracted from the cry signals. The Discrete Cosine Trans-
form (DCT) was applied to reduce the dimension retaining only
first 13 dimensional (D) coefficients. The delta and double-delta
features were also appended resulting in 39-D cepstral features
(denoted as ConvRBM-CC). The baseline MFCC features are
extracted from the cry signals with 25 ms window length and
10 ms window shift.

4.3. Binary Classification and Evaluation

Since both the cry databases are very small in size, the Gaus-
sian Mixture Models (GMM) is used for the binary classifica-
tion. Healthy cry features belong to one class and pathology cry
features belong to another class. The GMMs with different mix-
ture components were trained using the MFCC and ConvRBM-
CC. The decision of the test cry signal being healthy or pathol-
ogy is based on the log-likelihood ratio (LLR). The results are
predicted using LLR scores with 10-fold cross-validation (CV).
Since the number of samples in the two classes are different, we
applied 10-fold CV separately for each class and then combine
respective test folds. For each fold, we noted % classification
accuracy. The final result is presented as averaged % classifica-
tion accuracy over 10 CV folds. The performance of the clas-
sification task is evaluated using F-measure (also called as F1-
ratio), Youden’s J-statistic or informedness [33], and Matthews
Correlation Coefficient (MCC) [34] obtained from the confu-
sion matrix [35]. The range of F-measure is [0,1] while for
J-statistic and MCC, the range is [-1,1] (higher is better for all
the measures). MCC is considered as a balanced measure which
can be used even if the classes are of very different sizes.
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5. Experimental Results

In this Section, the classification results and evaluation using
various performance measures are presented.

5.1. Results on the DA-IICT Cry Database

The classification accuracy for the DA-IICT Cry database using
MFCC and ConvRBM-CC feature sets are shown in Table 2.
ConvRBM-CC obtained higher % classification accuracy com-
pared to MFCC for all the GMM components. For MFCC, the
optimal results obtained using 200 GMM components. For the
ConvRBM-CC, the optimal results obtained using 400 GMM
components. We achieved an absolute improvement of 2 %
in the classification accuracy compared to the MFCC feature
set. The confusion matrices for the classification experiment
are shown in Figure 4. The false positive (FP) and false neg-
ative (FN) rate of the MFCC are quite high compared to the
ConvRBM-CC feature set. From Figure 4 (b), it can be seen
that the ConvRBM-CC has no FP and only 4 FN compared to
21 FN using MFCC (Figure 4 (a)). Hence, with ConvRBM-CC,
there is no chance that the normal cry signal is considered as
pathological cry signal.

The performance measures of the classification experiments
on the DA-IICT Cry database are shown in Table 3. The
ConvRBM-CC gave a significantly better performance for all
the measures than MFCC. Since F-measure do not consider the
true negatives (TN) into account, the values of F-measure are
closer for both the feature sets. The MCC and J-measure values
are higher for ConvRBM-CC compared to the MFCC. From
Table 3, it can be observed that the difference in MCC and J-
statistic for MFCC and ConvRBM-CC is higher compared to
% accuracy. This is due to the fact that % accuracy does not
consider FP and FN in the confusion matrix. Hence, MCC and
J-statistic are more meaningful performance measure than %
classification accuracy alone.

5.2. Results on the Baby Chillanto Database

The experimental results using the Baby Chillanto database is
shown in Table 2 for MFCC and ConvRBM-CC with differ-
ent GMM mixture components. Compared to the Cry database,
both the features were able to perform well in the classifica-
tion of normal and pathology cry signals. However, ConvRBM-
CC consistently performs better than the MFCC for all GMM
components. The best classification accuracy of 99.87 % was
achieved using ConvRBM-CC (0.58 % absolute improvement
compared to the MFCC) obtained with 300 GMM mixture com-
ponents. The confusion matrices for both the feature sets are
shown in Figure 5. The false positive rate of the MFCC is quite
high than ConvRBM-CC (15 vs. 1), while there are no false
negative when ConvRBM-CC is used in the classification task.
Hence, with the ConvRBM-CC feature set, all the cry samples
are correctly classified with only one false negative. The signifi-
cance of this improvement using ConvRBM-CC feature set can
also be seen from the performance measures in Table 3. The
F-measure is similar for both the ConvRBM-CC and MFCC.
The MCC and J-statistic are higher for the ConvRBM-CC with
a value 0.999 (close to 1). The difference in values of MCC and
J-statistic indicates that ConvRBM-CC performs better than the
MFCC evenif % accuracy is similar.

Healthy Pathology

Healthy 791 8

Pathology 21 378

(a)

Healthy Pathology

Healthy ��� �

Pathology � ���

(b)

Figure 4: Confusion matrices for experiments on the DA-IICT
Cry database using: (a) MFCC, and (b) ConvRBM-CC.
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Figure 5: Confusion matrices for experiments on the Baby
Chillanto database using: (a) MFCC, and (b) ConvRBM-CC.

Table 2: The % classification accuracy using the DA-IICT Cry
database (D1) and Baby Chillanto database (D2) for various
GMM components (columns)

Dataset Feature Set 200 256 300 400 512

D1 MFCC 97.57 97.32 97.24 97.24 96.9
D1 ConvRBM-CC 99.58 99.58 99.58 99.66 99.57
D2 MFCC 99.12 99.25 99.16 99.29 98.94
D2 ConvRBM-CC 99.82 99.82 99.87 99.91 99.96

Table 3: Performance measures for the classification experi-
ments using the DA-IICT Cry database (D1) and Baby Chillanto
database (D2)

Dataset Feature Set MCC F-measure J-statistic

D1 MFCC 0.945 0.963 0.937
D1 ConvRBM-CC 0.993 0.995 0.99
D2 MFCC 0.986 0.994 0.985
D2 ConvRBM-CC 0.999 0.999 0.999

6. Summary and Conclusions
In this study, we proposed to use ConvRBM-based auditory fil-
terbank learning for the infant cry classification task. The sub-
band filters learned from the two infant cry databases shows
that most of the learned subband filters are the Fourier-like basis
functions. The filterbank scale is also different than the standard
auditory frequency scales since the ConvRBM is adapted to rep-
resent the cry signals. The classification experiments for the
healthy vs. pathological cry signals are presented. The experi-
mental results using standard performance measures show that
the proposed ConvRBM-based features perform significantly
well for the infant cry classification task. Our future work in-
cludes developing an infant cry classifier in a mobile application
framework that will be helpful to the doctors and society as ev-
ery infant may not have luxuary of access to the pediatricians.
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