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Abstract

Domain adaptation plays an important role for speech recog-
nition models, in particular, for domains that have low re-
sources. We propose a novel generative model based on cyclic-
consistent generative adversarial network (CycleGAN) for un-
supervised non-parallel speech domain adaptation. The pro-
posed model employs multiple independent discriminators on
the power spectrogram, each in charge of different frequency
bands. As a result we have 1) better discriminators that fo-
cus on fine-grained details of the frequency features, and 2) a
generator that is capable of generating more realistic domain-
adapted spectrogram. We demonstrate the effectiveness of our
method on speech recognition with gender adaptation, where
the model only has access to supervised data from one gender
during training, but is evaluated on the other at test time. Our
model is able to achieve an average of 7.41% on phoneme error
rate, and 11.10% word error rate relative performance improve-
ment as compared to the baseline, on TIMIT and WSJ dataset,
respectively. Qualitatively, our model also generates more nat-
ural sounding speech, when conditioned on data from the other
domain.

Index Terms: generative models, speech domain adaptation,
non-parallel data, unsupervised learning

1. Introduction

Neural-based acoustic models have shown promising improve-
ments in building automatic speech recognition (ASR) sys-
tems [1, 2, 3, 4]. However, it tends to perform poorly when
evaluated on out-of-domain data, because of mismatch between
the training and testing distribution (Table 1).

Domain mismatch is mainly due to variation in non-
linguistic features, such as different speaker identity, unseen en-
vironmental noise, large accent variations, etc. Therefore, train-
ing a robust ASR system is highly dependent on factorizing lin-
guistic features (text) from non-related variations, or adapting
the inter-domain variations of source and target.

Voice conversion (VC) has been widely used to adapt the
non-linguistic variations, such as statistical methods [5, 6, 7],
and Neural-based models [8, 9, 10, 11, 12, 13, 14]. However,
traditional VC methods require parallel data of source and tar-
get that is difficult to obtain in practice. In addition, the require-
ment of parallel data prevent these methods from using more
abundant unsupervised data. Therefore, an unsupervised do-
main adaptation is desirable for building a robust ASR system.

In this paper, we propose a new generative model based on
CycleGAN [15] for unsupervised non-parallel domain adapta-
tion. Since differences in magnitude of frequency is the main

Sound demos can be found at https://einstein.ai/research/a-multi-
discriminator-cyclegan-for-unsupervised-non-parallel-speech-domain-
adaptation
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Table 1: ASR prediction mismatch when train/test on different
genders, and when adapting using Multi-Discriminator Cycle-
GAN, on WSJ (eval92) dataset

Train on Male

CIBA AGREED TO REMEDY THE OVERSIGHT
SEVEN AGREED TO REMEDY THE OVER SITE

True
Female

TestOn  Female—Male CIBA AGREED TO REMEDY THE OVER SITE

Female ALITTLE ...NEWS COULD SOFTEN THE MARKET'S RESISTANCE
Female ALITTLE ...NEWS COULD SOUTH IN THE MARKETS RESISTANCE
Female—Male A LITTLE ...NEWS COULD SOFTEN THE MARKET'S RESISTANCE

Train on Female

True THEY EXPECT COMPANIES TO GROW OR DISAPPEAR
Male THE DEBUT COMPANIES TO GO ON DISAPPEAR

Teston  Male—Female THEY EXPECT COMPANIES TO GROW OR DISAPPEAR

Male

MR POLO ALSO OWNS THE FASHION COMPANY
MR PAYING ALSO LONG THE FASHION COMPANY
MR POLO ALSO OWNS THE FASHION COMPANY

True
Male
Male — Female

variation across domains for spectrogram representations, it is
imperative that CycleGAN correctly catch the spectro-temporal
variations between different frequency bands across domains
during training. This will allow the generator to learn the map-
ping function which can convert spectrogram from source to
target domain. In this paper, we show that the original Cy-
cleGAN model is failing to learn the correct mapping function
between domains, and the generator collapses into learning an
identity mapping function, which results in generating a noisy
and unnatural-sounding audio.

To accommodate generative adversarial network for train-
ing on non-parallel spectrogram domains, the generator should
be back-propagated with multiple gradient signals (from dif-
ferent discriminators), that each represents the variations be-
tween source and target domains at a specific frequency band.
To achieve this goal, we propose to use multiple and inde-
pendent discriminators for each domain, similar to generative
multi adversarial network (GMAN) [16]. We show that the
proposed Multi-Discriminator CycleGAN, without pretraining
the discriminators, outperforms CycleGAN [15] with pretrained
discriminator, for spectrogram adaptation. Furthermore, we
show that the multi discriminator architecture can overcome the
checkerboard artifacts problem caused by deconvolution layer
in generator [17], and generates natural clean audio. To evaluate
the performance of the proposed model, gender-based domains
are selected as domain adaptations.

1.1. Related Work

Generative Adversarial Network (GAN) [18] is a family of non-
parametric density estimation models which learn to model the
data generating distribution using adversarial training. Condi-
tional GANs (CGAN) [19] was first proposed for supervised
(parallel) domain adaptation, where the goal is to convert source
distribution to match the target. CGAN has been used in vari-
ous data domains, especially image domains, both for paral-
lel [20, 21] and non-parallel domain adaptation [22, 23, 15].
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Recently, CGAN is used for speech enhancement on par-
allel datasets [19, 20]. Speech denoising is achieved by con-
ditioning the generator on noisy speech to learn the de-noised
version [24, 25]. Donahue et al. [26] proposed a GAN model on
audio (WaveGAN) and spectrogram (SpecGAN), which is actu-
ally trained CGAN on parallel domains. Kaneko et al. [27] pro-
posed a cycle-consistent adversarial network (CycleGAN) [15]
with gated convolutional neural network (CNN) as the gener-
ator part, where the model is trained on Mel-cepstral coeffi-
cients (MCEPs) features. Hsu et al. [28] proposed a combina-
tion of variational inference network, using variational autoen-
coder (VAE) [29], and adversarial network, using Wasserstein
GAN (WGAN) [30]. In [28], the goal is to disentangle the lin-
guistic from nuisance latent variables via VAE using spectra (SP
for short), aperiodicity (AP), and pitch contours (F0) features,
followed by adversarial training to learn the target distribution
from the inferred linguistic latent distribution. A recurrent VAE
is also proposed [31, 32] to capture the temporal relationships
in the disentangled representation of sequence data, using Mel-
scale filter bank (FBank).

Contributions of the proposed generative model are, (1)
It is a robust GAN model developed for non-parallel unsu-
pervised domains, compared to parallel-based SpecGAN and
WaveGAN [26], (2) The choice of multiple discriminator is ad-
justable to the spectro-temporal structure of the intended do-
mains, compared to domain-specific model design of [27], (3)
Proposed GAN model training is robust and invariant to the
choice of adversarial objective, i.e. binary cross-entropy or
least square (LS-GAN [33]), while the CycleGAN in [27] is
only stable using least square loss, with additional using of
identity mapping loss in generator, (4) Source and target do-
mains in [27] are sampled from same speakers, both including
male and female, only uttering different sentences, while our
approach is more natural as source and targets distribution is
strongly diverged due to different speaker, gender, and uttered
sentences. (5) Compared to FHVAE [32], our models improves
ASR performance on TIMIT female set by 2.067% PER (Ta-
ble 3), when only trained on male.

2. Proposed Model

In this section, the proposed model is explained. We first de-
scribe the generative model based on adversarial network. Gen-
erative Model based on adversarial training (GAN) has been
proposed by Goodfellow et al. [18] to model the data gen-
erating distribution. Training GAN is based on minimizing
Jensen-Shannon divergence between data generating distribu-
tion pgate(x) and model data distribution p.(z). Learning is
through minimization of the adversarial loss between generator
network G(z), which learns a mapping function G : Z — X,
and discriminator network D(x). The generator is learning
to model the data distribution pgata(x) by generating indistin-
guishable samples & = G(z) from z, using a source noise sig-
nal z to minimize (1), whereas discriminator is learning to dis-
criminate between real data x and generated £ by maximizing
the adversarial loss,

Lean (G> D) :]ESBNPdata(l‘) [lOg D(x)} +
E.np. (2 [log (1 — D (G(2)))]

2.1. Domain Adaptation via GAN

For domain adaptation between parallel domains X and Y,
Conditional GAN (CGAN)[19, 20] is proposed, using a gen-
erator that directly learns the mapping function G : X — Y,
by minimizing parallel conditional adversarial loss Lp_ccan,

)]
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Lr-ccan (G, D) = Eqy)~piara e [108 D(z, )] +

Eonpiata(@).z~p-(2) [l0g (1 = D (2, G(z, 7)))]

where D is discriminating between pair of real parallel data
(z,y) and generated pair (x,G(z,z)). To apply CGAN for
adaptation between non-parallel domains X and Y, a con-
ditional GAN using cycle consistent adversarial loss (Cycle-
GAN) has been proposed [15, 22, 23]. In CycleGAN [15],
there are two conditional generators, i.e., Gx : X — Y and
Gy Y — X, each trained in adversarial setting with Dy and
Dx, respectively. In other words, there are two pairs of Non-
parallel conditional adversarial loss Lnp—ccan(Gx, Dy)
and Lnp—ccan(Gy, Dx), where,

@

Lnp-ccan (Gx, Dy) = Eyapy ) [log Dy (y)] +
Eonpx (@),2~p-(2) 108 (1 = Dy (Gx (2, 2)))]

In non-parallel situation, the goal is to find the correct pseudo
pair (z,y) across X and Y domains in an unsupervised way.
To ensure that Gx and G'y will learn such mapping function,
CycleGAN[15] proposed to minimize a cycle consistency loss
using ¢; norm,

Leycte =Eorpy () [| Gy (Gx (%)) =z [l1] +
Eypy ) [l Gx(Gy (y) =y [l1]

Therefore, CycleGAN[15] learns unsupervised mapping func-
tions between X and Y domains by combining (3) and (4), to
maximize the adversarial loss Lcyciegan, Where,

3

“

Leyetecan =Lnp—ccan(Gx, Dy)+
Lyp—cean(Gy,Dx)+
- )\Ecycle (GX, GY)

2.2. Multi-Discriminator CycleGAN (MD-CycleGAN)
In this section, we propose a multiple discriminator genera-
tive model based on cycle consistency loss (5). The model is
based on generative multi adversarial network (GMAN) [16].
In this paper, X and Y represents spectrogram feature datasets
of different speech domains. Spectrogram feature represents
the frequency variation of audio data through time dimension.
In order to allow CycleGAN to learn the mapping function of
spectrogram between different speech domains, the generators
{Gx,Gy} should be able to learn the variations in each fre-
quency band for each aligned time window, across domains.

In order to learn the frequency-dependent mapping func-
tions {Gx, Gy} that catch the variation per each frequency
bands, we define multiple frequency-dependent discriminators

(&)

{DQ E",D{}‘EM}, where fjen represents the i*" frequency
band of domain X with n frequency bands, and f;en, represents
7-th frequency band od domain Y, respectively. The frequency
band definition in each domain can share a portion of frequency
spectrum, or be exclusive, based on the domain spectrogram
distribution. We are also using the non-saturating version of
GAN[18], NS-GAN, where the generator G is learned through
maximizing the probability of predicting generated samples &
as drawn from data generating distribution pgata(x). Accord-
ingly, the adversarial loss for each pair of generator and dis-

eriminator { (Gx, D<), (Gv, D¥*" ) }in (3 and (5) is

LyMD-CGAN (GX7D{/"EM) =E@)~py ) {Z log D{! (?J)}
=1

+E:L'~px(l'),z’\‘pz(z> |:Z lOg (D{} (GX(Z7‘%'))):|

i=0
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The Multi-Discriminator CycleGAN (MD-CycleGAN) is
training by maximizing £ p—cyclecan, Where,

f.
Lyp—cycieGAN =Lyup—caan(Gx, Dy €™ )+

Lyvp-caan(Gy, DQE" )+
- )\['cycle(GX, GY)

A natural extension to the proposed MD-CycleGAN is to
use multiple frequency-dependent generators [34] jointly with
discriminators as well. This can follow in two configu-
rations. In one-one setting, each generator is trained on
a specific frequency band with the corresponding discrim-

inator, i.e., set of {(GQ,D{}) S m}. Additionally,
in one-many setting, each frequency-dependent generator is
trained with all frequency-dependent discriminators, i. e., set of

{(Gﬁg , Dé"e’”’) 1j € n} trained in adversarial setting.

O]

3. Experiment

We used TIMIT [35] and Wall Street Journal (WSJ) corpo-
ras to evaluate the performance of proposed model on do-
main adaptation. TIMIT dataset contains broadband 16kHz
recordings of phonetically-balanced read speech of 6300 ut-
terances (5.4 hours). Male/Female ratio of speakers across
train/validation/test sets are approximately 70% to 30%. WSJ
contains 80 hours of standard si284/dev93/eval92 for
train/validation/test sets, with equally distributed genders.

The spectrogram representation of audio is used for train-
ing the CycleGAN and ASR models, which is computed with a
20ms window and 10ms step size. Each spectrogram is normal-
ized to have zero mean and unit variance. To implement MD-
CycleGAN, three non-overlapping frequency bands are defined,
i.e. m = n = 3 with [53, 53, 55] bandwidth, for male and
female domains. We denote the size of the convolution layer
by the tuple (C, F, T, SE, ST), where C, F, T, SF, and ST de-
note number of channels, filter size in frequency dimension, fil-
ter size in time dimension, stride in frequency dimension and
stride in time dimension respectively. CycleGAN model archi-
tecture is based on [15] with some modifications. The generator
is based on U-net [36] architecture with 4 convolutional layers
of sizes (8,3,3,1,1), (16,3,3,1,1), (32,3,3,2,2), (64,3,3,2,2) with
corresponding deconvolution layers. We noticed that the dis-
criminator in [15] outputs a vector with dimension equal to the
channel size of final convolution layer, instead of outputting
a scalar [18]. It was observed that this causes instability in
a balanced training between generator and discriminator. We
modified this by adding a fully connected layer as final layer,
to match the discriminator in [18]. Discriminator has 4 con-
volution layers of sizes (8,4,4,2,2), (16,4,4,2,2), (32,4,4,2,2),
(64,4,4,2,2), as default kernel and stride sizes in [15]. We used
Griffin-lim algorithm [37] for audio reconstruction, to assess its
quality. ASR model is based on [38], trained with maximum
likelihood, and no policy gradient. The model has one con-
volutional layer of size (32,41,11,2,2), and five residual con-
volution blocks of size (32,7,3,1,1), (32,5,3,1,1), (32,3,3,1,1),
(64,3,3,2,1), (64,3,3,1,1) respectively. Following the convolu-
tional layers are 4 layers of bidirectional GRU RNNs with 1024
hidden units per direction per layer, one fully-connected hidden
layer of size 1024 and final output layer.

~
~

3.1. Quantitative Evaluation

In this section, ASR model is employed to evaluate the perfor-
mance of proposed model, where domains are different genders.
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Table 2: TIMIT, Train set Female—Male domain adaptation.
Note: Female&—Male means Female+Female— Male

Male (PER)
Model Train Val Test
Female 40.704  42.788
Female—Male 40.095 42.379
One-D CycleGAN g ale&—Male 390200 42211
Female—Male 29.838 33.463
Three-D CycleGAN o le&—Male  30.009 33273
Male (baseline) 20.061 22.516

Table 3: TIMIT, Train set Male— Female domain adaptation.
Note: Male&—Female means Male+Male— Female

Female (PER)

Model Train Val Test
Male 35.702 30.688
Male—Female 32,943  30.069
One-D CycleGAN 1 leg&—Female  31.289  29.038
Male—Female 28.80  25.448
Three-D CycleGAN  \ 1o le&—Female  25.982  24.133
FHVAE [32] Male + z; 26.20
Female (baseline)  24.51 23.215

Table 4: WSJ, Train set Female<+Male domain adaptation, us-
ing Three-D CycleGAN trained on TIMIT train set.

Test -eval92

Male Female
Train CER WER CER WER
Female (baseline) 14.31 27.66 2.80 6.71
Female&—Male 520 12.39
Male (baseline) 3.19 8.16 7.57 16.38
Male&—Female 4.22 9.46

First, gender generators {Gar—r, Gr—u} ! are trained on
gender-separated train set. These generators are then evaluated
for train—test and test—train adaptation using ASR model. In
former, ASR model is retrained on the adapted train set, while
in latter, a more applicable case, ASR model is fixed and evalu-
ated on the new adapted test sets.

3.1.1. Train—Test Adaptation

Results on adapting TIMIT train set are shown in Table 2 and 3.
As ablation study to CycleGAN-VC [27], performance is sig-
nificantly improved with three discriminator compared to single
one. Compared to FHVAE [32], phoneme error rate is improved
by 2.067% in Table 3. To evaluate the generalization of the gen-
erators, we used them on WSJ dataset without retraining. As
shown in Table 4, ASR performance is significantly improved
by reducing the gap to the corresponding male and female base-
lines. For a fair comparison, ASR performance trained on WSJ
train set is 5.55% WER. It is worth mentioning that relatively
lower performance on TIMIT is due to smaller size of dataset.

3.1.2. Test—Train Adaptation
Test set adaptation of TIMIT and WSJ are shown in Table 5
and 6. It is clear that using the proposed model, ASR perfor-

VG : Male — Female, Gp_y pp : Female — Male
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(e) Female — Male, Three-D CycleGAN

(f) Male — Female, Three-D CycleGAN

Figure 1: Spectrogram conversion for (a,c,e) female—male, and (b,d.f) male—female, using One-D CycleGAN and Three-D CycleGAN
on TIMIT test set. Note: The One-D CycleGAN generator converges only by pretraining the discriminator first, unless the generator
will learn identity mapping function. However, the Three-D CycleGAN results are achieved without pretraining.

mance is significantly improved by adapting test—train , com-
pared to original CycleGAN. Qualitative assessment of ASR
predictions are shown in Tables 1 and Appendix A.

Table 5: TIMIT, Test set Male<>Female domain adaptation

Train

Test (PER) Model Male  Female
Male (baseline) - 22516  42.788

One-D CycleGAN 43.427
Male—Female ' CycleGAN 37.000
Female (baseline) — 32.085 23.215
Female—sMale One-D CycleGAN 32.606

Three-D CycleGAN  25.758

Table 6: WSJ, Test set Male<Female domain adaptation

Train
Test (CER / WER) Male Female
Male (baseline) 3.19/8.16  14.31/27.66
Male—Female 6.82/15.68
Female (baseline) 7.57/16.38 2.80/6.71
Female—Male 5.93/13.18

3.2. Qualitative Evaluation

In this section, the quality of generated spectrogram for
male<>female adaptation is assessed. The characteristic dif-
ference between male and female spectrograms is the varia-
tion rate of frequency for a fixed time window. As shown
in Figure 1, top row depicts the original spectrograms, where
male is characterized by smooth frequency variation, opposed
to peaky and high-rate variations of female. Well-trained gen-
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erators should catch these inter-domain variations. As ablation
study, we are also showing the generated spectrogram by Cycle-
GAN [15] (One-D CycleGAN), in middle row, comparing with
Three-D CycleGAN in bottom row. One-D CycleGAN learns
to convert the spectrogram only using a pretrained discrimina-
tor. It is noticeable that the converted spectrogram in One-D
CycleGAN fails to match the target domain characteristics, at
some frequency bands, and simply copied the source spectro-
gram. However, with no pretraining of Three-D CycleGAN,
it learns a better mapping function, by either suitably smooth-
ing the spectrogram (female—male), or generating peaky varia-
tions (male—female). The checkerboard artifacts [17] is a com-
mon problem in deconvolution-based generators. This prob-
lem is visible in One-D CycleGAN, with discontinuous arti-
facts through time and frequency dimensions, which results in a
noisy and unnatural-sounding audio. This problem is mitigated
in Three-D CycleGAN, by learning the target domain charac-
teristics using multiple independent discriminators.

4. Conclusion and Future Directions

In this paper, a new cyclic consistent generative adversarial
network based on multiple discriminators is proposed (MD-
CycleGAN) for unsupervised non-parallel speech domain adap-
tation. Based on the frequency variation of spectrogram
between domains, the multiple discriminators enabled MD-
CycleGAN to learn an appropriate mapping functions that catch
the frequency variations between domains. The performance
of MD-CycleGAN is measured by ASR prediction, when train
and test set are sampled from different genders. It was shown
that MD-CycleGAN can improve the ASR performance on un-
seen domains. As future extension, this model will be eval-
uated on datasets adaptation, e.g. TIMIT«+>WSJ, and accent,
e. g. American<Indian adaptations.
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