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Abstract
Waveform generator is a key component in voice conversion.
Recently, WaveNet waveform generator conditioned on the
Mel-cepstrum (Mcep) has shown better quality over standard
vocoder. In this paper, an enhanced WaveNet model based
on spectrogram is proposed to further improve voice conver-
sion performance. Here, Mel-frequency spectrogram is con-
verted from source speaker to target speaker using an LSTM-
RNN based frame-to-frame feature mapping. To evaluate the
performance, the proposed approach is compared to an Mcep
based LSTM-RNN voice conversion system. Both STRAIGHT
vocoder and Mcep-based WaveNet vocoder are elected to pro-
duce the converted speech for Mcep conversion system. The
fundamental frequency (F0) of the converted speech in differ-
ent systems is analyzed. The naturalness, similarity and intel-
ligibility are evaluated in subjective measures. Results show
that the spectrogram based WaveNet waveform generator can
achieve better voice conversion quality compared to traditional
WaveNet approaches. The Mel-spectrogram based voice con-
version can achieve significant improvement in speaker similar-
ity and inherent F0 conversion.
Index Terms: voice conversion, WaveNet vocoder, mel-
frequency spectrogram, LSTM-RNN

1. Introduction
Voice Conversion(VC) is a technique to modify the speech of
the source speaker to sound like the target speaker while pre-
serving the linguistic content[1]. Conventional voice conver-
sion techniques focus on developing conversion functions using
some parallel data which the source speaker and target speaker
speak the same sentences. Some conversion models like Gaus-
sian mixture model(GMM)[2], deep neural networks[3, 4] have
been applied to convert the acoustic features from the source
speaker to the corresponding target speaker.

The sound quality of the converted speech is always attrac-
tive to researchers. There are always distortions in the converted
speech, e.g. over-smoothing, lack of similarity and etc. In
parametric voice conversion, several techniques have been pro-
posed to enhance the sound quality, e.g. modeling additional
features(Global Variance[5], Spectrum envelope[6]) and post-
filtering[7]. However, the quality of the converted speech is still
not as natural as the target speaker. One important factor is
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that the acoustic features used for parametric voice conversion
are usually vocoder parameters (e.g. Mel-cepstrum, F0) whose
conversion can lead to quality distortion when generating wave-
form with the converted vocoder parameters.

Recently, a high-quality vocoder [8] has been proposed
with WaveNet speech generation model. WaveNet [9] is the
state-of-art natural waveform generation technique that can pro-
duce high quality speech waveform. One of its advantages
is that the WaveNet speech generation model is able to gen-
erate waveform on specific conditions like linguistic informa-
tion or acoustic features. It has been applied to many ap-
plications like text-to-speech [9, 10, 11], voice conversion[6]
and speech vocoder[8]. The WaveNet waveform generation
in Voice Conversion has been proposed in [6]. Similar to the
WaveNet vocoder[8], the acoustic features in [6] are mainly the
Mel-cepstrum(Mcep) and fundamental frequency(F0) which
are widely used for speech synthesis. The sound quality of
the WaveNet-vocoded converted voice is comparable to the
STRAIGHT-vocoded[12] voice. Very recently, Tacotron 2[10]
has been proposed as a sequence-to-sequence model with at-
tention in end-to-end speech synthesis. Comparing to Tacotron
1[13], one of its advantages is that the speech signals are gener-
ated with WaveNet architecture conditioning on Mel-frequency
spectrogram. It draws our interest that: does Mel-frequency
spectrogram work better in other speech generation tasks? We
will give an investigation on introducing the Mel-frequency
spectrogram into voice conversion tasks.

In this paper, we propose a high quality voice conversion
architecture with mel-frequency spectrogram as acoustic fea-
tures. The converted features are then vocoded into wave-
form using a Mel-spectrogram based WaveNet vocoder. A
Mcep-based voice conversion system we proposed before [14]
(Group ’G’ in VCC2016[15]) is used for comparison. The Mel-
spectrogram and Mcep in different systems are trained using
similar LSTM-RNN neural networks for frame-to-frame feature
mapping. The converted Mcep and F0s are vocoded to wave-
form using STRAIGHT vocoder and an Mcep-based WaveNet
vocoder. The F0 contours of converted waveform, which is an
important factor of the speech quality, are analyzed in detail for
different systems. The naturalness, similarity and intelligibility
are subjectively evaluated by human listeners. The result shows
that, voice conversion with Mel-frequency spectrogram can pro-
duce high quality converted voice especially in similarity.

The rest of this paper is organized as follows: Section 2
gives an introduction of the parallel data voice conversion and
introduces the LSTM-RNN acoustic feature conversion archi-
tecture. Section 3 proposes the Mel-spectrogram based voice
conversion technique with Mel-spectrogram WaveNet vocoder.
Section 4 describes the experiments with measurements. Sec-
tion 5 gives the conclusion and the future work.
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(a) Mel-cepstral based Voice Conversion

(b) Mel-spectrogram based Voice Conversion

Figure 1: Architectures of voice conversion systems with
WaveNet vocoder

Figure 2: BLSTM frame to frame voice conversion.

2. Parallel Data Voice Conversion
This section gives an introduction of the parallel data voice con-
version framework. Fig.1-(a) shows the architecture of a Mcep-
based parallel data voice conversion system. The acoustic fea-
tures of the source speaker are converted to the target speaker
in different feature streams. The converted features are then
vocoded into audio signals. This architecture is also a general
parametric voice conversion framework[16] in which the gen-
eral treatments are replaced by specific methods (e.g. BLSTM-
NN, WaveNet Vocoder).

For a speech pair with the same text, the acoustic features
x̂ = x̂1, .., x̂m from the source speaker and the corresponding
acoustic features ŷ = ŷ1, .., ŷn from the target speaker are first
aligned into the same length T . The alignment is usually ap-
plied directly by Dynamic Time Wrapping (DTW)[17]. Also,
there are techniques to get a more accurate feature alignment
with the help of automatic speech recognition (ASR) techniques
[18, 14, 19]. The aligned feature sequences x = x1, .., xT and
y = y1, .., yT are then converted frame by frame in different
methods (e.g. GMM, LSTM). In this paper, the Mcep is con-
verted using a BLSTM-NN architecture shown in Fig.2. The
training cost is simply measured by the mean square error as
shown in Eq.1 where Mxy is the Mcep converting model from
source speaker to target speaker. The F0 is converted linearly
and the aperiodicity is not converted in this work.

L =
T∑

i=1

|Mxy(xi)− yi|2 (1)

We observed that the intelligibility of the converted speech
may degrade with WaveNet Vocoder. We tried to improve the
intelligibility using un-parallel voice conversion techniques. A
simple dual training strategy is applied to train Mxy and Myx

Table 1: Fundamental frequency(RMSE)

System bdl-rms clb-rms bdl-slt clb-slt

MSP-WaveNet 10.18 10.28 9.15 9.1
Mcep-WaveNet 11.22 10.85 11.76 11.06

together as in [20]. Unfortunately, we only observed minor im-
provements in preliminary test. We plan to fully import Cycle-
GAN [20] to improve the intelligibility in future work.

3. Voice conversion with Mel-spectrogram
3.1. Mel-spectrogram conversion

Mel-spectrogram is a very low level acoustic presentation of
the speech waveform. It has not yet been imported as acous-
tic features in voice conversion tasks, since there is not a good
Vocoder for Mel-spectrogram before.

We propose a very simple architecture1 to convert the
speech waveform with Mel-spectrogram as shown in Fig.1(b).
The speech waveform is only analyzed into Mel-spectrogram.
Then the Mel-sepctogram is converted frame-by-frame follow-
ing the architecture in Fig.2. Compared to the conventional
Mcep-based voice conversion, F0 is not necessary to be con-
verted explicitly as a separate feature stream. It has been ad-
dressed in [15] that F0 and duration patterns may be parame-
terized to properly handle their supra-segmental characteristics,
which are not well converted within the frame-wise conversion
process. However, in the proposed system, F0 is converted in-
herently while converting the Mel-spectrograms. The perfor-
mance of the F0 conversion will be analyzed in detail in the
experiments.

3.2. WaveNet vocoder

The conventional vocoder of voice conversion makes vari-
ous assumptions which usually cause the sound quality degra-
dation of the converted voice. Therefore, Wavenet Vocoder
mainly based on Mel-cepstrum and F0 was proposed[6] to
overcome this problem. The result shows that the Speaker-
Dependent Wavenet Vocoder[8] can generate better waveform
than MLSA[21].

The Mel-spectrogram based WaveNet follows the architec-
ture in Tacotron 2[13], which can produce high quality speech
waveform in end-to-end text-to-speech task. The architecture of
conditional WaveNet is shown in Fig.3[8]. It consists of a stack
of dilated causal convolution layers, each can process the input
vector in parallel. Two transposed convolution layers are added
for upsampling. Also, the gated activation functions are used
in WaveNet with the mechanism to condition extra information
such as acoustic or linguistic features:

z = tanh(Wf ∗ i + Vf ∗ c)� σ(Wg ∗ i + Vg ∗ c) (2)

where ∗ denotes a convolution operator, and � denotes an
element-wise multiplication operator. σ(·) denotes a sigmoid
function. i is the input vector and c is the extra condition fea-
ture like Mel-spectrogram and one hot of speaker identity. f and
g represent filter and gate,respectively. W and V are learnable
weights. Instead of using 8-bit(µ-law)[22], the signal samples

1The method to convert Mel-spectrogram can be investigated in fu-
ture works. In this paper, we want to address that the simplest way can
also achieve good performance.
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Figure 3: Architecture of Conditional WaveNet Vocoder

Table 2: Comparison of voiced/unvoiced decision error(%)

System bdl-rms clb-rms bdl-slt clb-slt

Msp-WaveNet 3.38 3.1 2.63 4.01
Mcep-WaveNet 3.46 3.21 2.71 3.63

are modelled with the discretized mixture of logistics distribu-
tion introduced in [23, 24].

4. Experiments and Results

4.1. Experiment setup

The experiments were conducted on CMU ARCTIC dataset[25]
using PyTorch[26]. The sentences in the dataset are randomly
divided into train, develop and test set, each with 957, 107,
55 sentences. The waveform is sampled at 16kHz sampling
rate. The Mel-spectrograms are extracted through a short-time
Fourier transform (STFT) using a 50ms frame size, 12.5 ms
frame hop and a Hann window function as in [10]. The base-
line system uses the same LSTM-RNN voice conversion sys-
tem in [14]. The converted acoustic features are vocoded into
speech waveform using both MLSA and Mcep-based WaveNet
vocoder[8]. The Mcep-based WaveNet Vocoder proposed in [6]
follows the best vocoder trained on natural acoustic features.
The Mceps are extracted at 5ms frame shift. But different from
[6], we use the conversion model in [14] and trained a speaker
dependent WaveNet Vocoder using 8 bits µ-law.

In the system proposed in this paper, we first trained a
speaker independent WaveNet vocoder on all waveforms in the
CMU ARCTIC dataset except the utterance in the test set. The
WaveNet network was trained for 1000k steps with Adam op-
timizer with a mini batch of 16 on 4 GTX1080TI, and it has
24 layers , which is divided into 4 groups. The hidden units of
residual connection and gating layers are 512, the skip connec-
tion of the output layer is 256. we also use 10 mixture compo-
nents for the mixture of logistics output distribution[24]. Then
we trained a converting model based on LSTM network, which
has two layers and the hidden units is 256. Before the lstm layer,
we use two dense layer with PReLU[27] activation. And we
apply a global mean-variance transformation for source and tar-
get speaker. To ensure that both WaveNet vocoders were well-
trained. The training procedure is stopped after the WaveNet
vocoder can generate convincing speech on the training set.

Figure 4: The Distribution of F0 in converted speech.

Figure 5: The F0 contour extracted from the converted speech

4.2. Objective Measure

F0 is an important acoustic features that affect the speech qual-
ity a lot. In the Mel-spectrogram based voice conversion, all the
acoustic information is maintained in the lower level spectro-
gram representation. Therefore, F0 is converted inherently dur-
ing the Mel-spectrogram conversion. We first present an evalu-
ation of the F0 contour of the converted speech.

The F0 contours are extracted from both natural and con-
verted speech using WORLD[28]. Fig.5 shows an example of
F0 contours2. We can see that the F0 contour from the Mel-
spectrogram converted voice is closer to the target speech, even
F0 is not explicitly converted. We draw a distribution of F0 in
Fig.4, the system we proposed and the system based on Mel-
cepstrum all have a close mean and standard deviation with the
target speech. Exactly, the F0 in the system based on Mel-
cepstrum is converted by a global mean-variance transformation
between source utterances and target utterances. So it is con-
firmed that the system proposed in this paper can obtain better
F0 without any prior condition.

Table 1 indicates the objective measure of F0 error. Be-
fore we evaluate, DTW is applied to align the natural target ut-
terance and the converted utterance. The system we proposed
has higher accuracy than the system based on Mel-cepstrum.
And table 2 lists unvoiced/voiced (U/V) decision errors.It is be-
lieved that the proposed system could capture the U/V informa-
tion with comparable accuracy with the system based on Mel-
cepstrum.

2The sentence is b0185. The audio is converted from bdl to slt.
Since bdl and slt have similar speaking rates, we can directly look
into their F0 contours in parallel.
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Figure 6: MOS on intelligibility of the converted speech.

Figure 7: MOS on naturalness of the converted speech.

4.3. Subjective Measure

All the subjective tests are conducted in both intra-gender and
cross-gender cases. In the listening test, we use (clb→slt) as
the intra-gender pair and (bdl→slt) as the cross-gender pair. All
55 sentences in the test set are used for listening tests3. Every
sentence is presented to at least 6 listeners in each test. The
listeners are all non-native speakers.

4.3.1. Naturalness

We run a Mean Opinion Score (MOS) evaluation on the speech
naturalness. The Mel-spectrogram is shorten as Msp. The eval-
uated experiment sets are listed below:

• Natural speech (N)
• WaveNet-vocoded speech on natural Msp (WNS4)
• WaveNet-vocoded speech on natural Mcep (WNC)
• WaveNet-vocoded speech on converted Msp (WCS)
• WaveNet-vocoded speech on converted Mcep (WCC)
• MLSA-vocoded speech on converted Mcep (MCC)

4.3.2. Intelligibility

We observed that the contextual information may be distorted
with WaveNet vocoder (both Msp and Mcep). So we also run a
MOS evaluation on the intelligibility of the converted speech.

4.3.3. Similarity

We run an preference test to evaluate the similarity. The con-
verted speech from the two systems are provided to the listeners

3samples:https://azraelkuan.github.io/High-quality-Voice-
Conversion-Using-Spectrogram-Based-WaveNet-Vocoder/

4The first char refers the vocoder type (WaveNet/MLSA); the second
char refers to the acoustic features (Natural/Converted); the third char
refers to the acoustic feature type (Mel-Spectrogram/Mel-Cepstrum).

(a) bdl to slt

(b) clb to slt

Figure 8: Preference test on similarity.

in random orders along with the natural speech of the same sen-
tence from the target speaker. The listeners were asked to select
which sentence sounds more like the target speaker.

4.4. Experiment Results

Fig.7 shows the result of naturalness of the converted speech.
We can see that WNS performs better than WNC, which means
the Mel-spectrogram conversion has higher upper bound in
speech naturalness, which can be further investigated. In addi-
tion to this, WCS achieves much better performance compared
to WCC and MCC, which indicates that the Mel-spectrogram
based voice conversion can achieve good naturalness.

Fig.6 shows the result of intelligibility of the converted
speech. MCC achieves better performance than WCS and
WCC. One of the reasons is that MCC can generate converted
voice with steady quality in all the frames, the other one is that
WaveNet Vocoder will generate buzzy voice sometimes, which
can be considered as the lack of training data for WaveNet
Vocoder. This might also indicate the reason why Mcep-based
WaveNet vocoder has a similar speech quality MOS compared
to MLSA in [15] even with a much higher naturalness.

Apart from this, we can also see that the WNS performs
much better than WNC, which means the Mel-spectrogram con-
tains more information than Mel-cepstrum.

Fig.8 shows the results of similarity of different systems
compared to the target speaker. It shows that Msp Wavenet
performs significantly better than Mcep WaveNet and Mcep
STRAIGHT on intra-gender and cross-gender case.

5. Conclusion and Future Work
This paper presents a voice conversion technique to generate
high quality voice from source speaker to target speaker with
LSTM network and Mel-spectrogram based WaveNet Vocoder.
Instead of using a conventional feature of STRAIGHT, we
apply Mel-spectrogram in the pipelines of the proposed sys-
tem. The experiment shows that Mel-spectrogram based
WaveNet Vocoder performs much better than Mel-cepstrum
based WaveNet Vocoder in voice conversion task in naturalness,
similarity and intelligibility. In future work, we plan to build
a transform learning technique to enable WaveNet Vocoder to
generate better steady voice in small dataset, and further inves-
tigate the modelling algorithm on Mel-spectrogram.
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[19] B. Çişman, H. Li, and K. C. Tan, “Sparse representation of pho-
netic features for voice conversion with and without parallel data,”
in Automatic Speech Recognition and Understanding Workshop
(ASRU), 2017 IEEE. IEEE, 2017, pp. 677–684.

[20] T. Kaneko and H. Kameoka, “Parallel-data-free voice conver-
sion using cycle-consistent adversarial networks,” arXiv preprint
arXiv:1711.11293, 2017.

[21] S. Imai, K. Sumita, and C. Furuichi, “Mel log spectrum approx-
imation (mlsa) filter for speech synthesis,” Electronics and Com-
munications in Japan (Part I: Communications), vol. 66, no. 2,
pp. 10–18, 1983.

[22] G. Recommendation, “Pulse code modulation (pcm) of voice fre-
quencies,” ITU, 1988.

[23] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma,
“Pixelcnn++: Improving the pixelcnn with discretized logis-
tic mixture likelihood and other modifications,” arXiv preprint
arXiv:1701.05517, 2017.

[24] A. v. d. Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals,
K. Kavukcuoglu, G. v. d. Driessche, E. Lockhart, L. C. Cobo,
F. Stimberg et al., “Parallel wavenet: Fast high-fidelity speech
synthesis,” arXiv preprint arXiv:1711.10433, 2017.

[25] J. Kominek and A. W. Black, “The cmu arctic speech databases,”
in Fifth ISCA Workshop on Speech Synthesis, 2004.

[26] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch: Ten-
sors and dynamic neural networks in python with strong gpu ac-
celeration,” 2017.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,”
in Proceedings of the IEEE international conference on computer
vision, 2015, pp. 1026–1034.

[28] M. Morise, F. Yokomori, and K. Ozawa, “World: a vocoder-based
high-quality speech synthesis system for real-time applications,”
IEICE TRANSACTIONS on Information and Systems, vol. 99,
no. 7, pp. 1877–1884, 2016.

1997


