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Abstract
Deep learning has improved the performance of acoustic scene
classification recently. However, learning is usually based on
short-time Fourier transform and hand-tailored filters. Learning
directly from raw signals has remained a big challenge. In this
paper, we proposed an approach to learning audio scene pat-
terns from scalogram, which is extracted from raw signal with
simple wavelet transforms. The experiments were conducted
on DCASE2016 dataset. We compared scalogram with clas-
sical Mel energy, which showed that multi-scale feature led to
an obvious accuracy increase. The convolutional neural net-
work integrated with maximum-average downsampled scalo-
gram achieved an accuracy of 90.5% in the evaluation step in
DCASE2016.
Index Terms: Acoustic scene classification, Scalogram, Con-
volutional neural network, DCASE2016

1. Introduction
Environmental sound carries a large amount of information
about surroundings. Acoustic scene classification (ASC) aims
to classify the sound into one of predefined classes, e.g., park,
office, library[1]. Environment information enables devices and
robots to be context-aware.

Acoustic feature plays an import role in ASC tasks. Raw
signal is densely sampled in time, thus features are expected
to character the sound without throwing away relevant infor-
mation. Most features are based on the Fourier transform
and sophisticated filters[2]. However, the short-time Fourier
transform (STFT) is confronted with time-frequency resolution
trade-off[3]. Furthermore, sound information is stored in dif-
ferent time scales. Pitch and timbre is at the scale of mil-
liseconds, the rhythm of speech and music is at the scale of
seconds[4]. Wavelet transform enables to sense signal at dif-
ferent time scales. Based on the needs of ASC task, we can
independently apply wavelet filters and generate effective mul-
tiscale features. Named after spectrogram, the visual represen-
tation of the spectrum of scales varying with time is called as
scalogram. Previous work[5, 6, 7] has shown its potential, but
the final performance usually falls behind tradition features[8].

Deep Neural Networks (DNN) have been very successful at
ASC[9], image classification[10], gesture detection[11] tasks.
In computer vision, convolutional neural network (CNN) has
the capability to learn appropriate filters and uncover high-level

patterns. However, it remains a big challenge for CNNs to learn
acoustic features from raw signal. Mel energy is usually served
as CNN input[12, 13], few work has been done in wavelet fea-
tures.

In this work, we explored CNNs integrated with scalogram
to directly classify audio scenes. The raw signal first goes
through wavelet filters in different scales, then modulus and
downsampling operations to construct scalogram. The CNNs
with small kernels are deployed to automatically learn high-
level patterns. Compared with the published works, we have
achieved the best performance for single systems with an eval-
uation accuracy up to 90.5% on DCASE2016 dataset.

2. Scalogram
The scalogram is locally translation invariant and stable to time-
warping deformation. The properties of effective acoustic fea-
tures are first reviewed, then the scalogram extraction procedure
is introduced.

2.1. Background

Acoustic Features should be time-invariant and stable to time
deformation[4, 14]. The former means that the audio segment
belongs to the same class even if it is shifted by a constant in
time, which can be written as

xc(t) = x(t− c) (1)

Φ(x) = Φ(xc) (2)

where xc(t) is the signal x(t) shifted by a constant c and Φ
transforms the origin signal to audio feature.

Stability to time warping means that small deformation in
the raw signal leads to small modification in audio feature, giv-
ing

xτ (t) = x(t− τ(t)) (3)

||Φ(x)− Φ(xτ )||2 ≤ C sup
t
|τ ′| ||x||2 (4)

where function τ(t) denotes time warping satisfying |τ ′(t)| <
1 and there exists C > 0 representing a measure of stabil-
ity. The modulus of STFT is translation invariant due to short
window function and modulus operation, but not stable to time
warping at high frequencies.

Mel scale filter bank coefficients (FBank) is the log power
spectrum in Mel scales. The power of STFT ensures time invari-
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Figure 1: Schematic diagram of scalogram.

ant smaller than window length. The Mel filters have a constant-
Q frequency bandwidth at high frequencies, which ensures its
stability to time warping.

Inspired by FBank feature, we consider wavelet filters,
whose support and bandwidth is logarithm spaced, similar to
Mel filters. The modulus and pooling operations make feature
to be time-shift invariant.

2.2. Extraction Procedure

As shown in Figure 1, the scalogram is defined as the raw signal
sequentially passing through wavelet filters, modulus operation,
maxpooling or average pooling, logarithm operation.

The center frequency of mother wavelet is normalized to
1. Q denotes the number of wavelets per octave. The dilated
wavelets of center frequency λ is written

ψλ(t) = λψ(λt) (5)

ψ̂λ(ω) = ψ̂(ω/λ) (6)

where λ = 2j/Q, j = 0, 1, J . The maximum scale J is calcu-
lated regarding to the maximum window width T of wavelets.

J = 1 + round(Qlog2(
N(T )

4Q
)) (7)

N(T ) is the number of sample points in window length T . The
support of ψ̂(ω) is centered at λ with a frequency bandwidth
λ/Q; the energy of ψ(t) is centered around 0 with a time width
2πQ/λ. The stride of wavelets is inversely proportional to fil-
ter’s bandwidth, given

stride = N(T )2
−floor( j

Q
)−1 (8)

In our experiment, we used the Morlet wavelet, which is
defined as

ψ(t) = exp(it)θ(t) (9)

where θ(t) is a Gaussian filter whose bandwidth is of order
Q−1.

After filtered by wavelets, the modulation removes coeffi-
cients’ phase and only amplitude information is preserved.

Because wavelets in different scales have different strides,
a downsampling method is needed to unify coefficients into the
same length. We exploit simple maximum and average pooling

Figure 2: Scalograms of a 12-second record which belongs to
the office scene.(a)Average pooling;(b)Max pooling.

approaches to downsample redundant coefficients. The average
pooling is used to extract mean information; the maxpooling is
used to capture the occurrence of strongest amplitude during a
frame. For example, if the information is rhyme, average pool-
ing removes unnecessary fluctuation. While if the information
is click, maxpooling may mark the transient event. Figure 2 rep-
resents the deviation of these two downsampling approaches.
The max-pooled scalogram has a higher contrast. Note that at
around 1.6s, something dropped on the floor. At around 5.5s,
7.6s and 10.8s, someone clicked the mouse. We can directly
seek out these events on the scalogram.

Due to its variable time-frequency resolution, FFT is ap-
plied to process the entire sequence which consumes more
computation compared with windowed FFT. The extraction of
scalogram becomes slow when the signal is long enough. In
practice, it is recommended to split long signal with a fixed
time interval, which should be much longer than wavelet’s time
width.

3. Methods
3.1. Dataset

All experiments were conducted on the dataset of ASC task
provided by the IEEE challenge on Detection and Classifica-
tion of Acoustic Scenes and Events 2016 (DCASE2016)[1].
The dataset includes development (Dev.) and evaluation (Eva.)
part. The development dataset contains 15 acoustic scenes, 78
recordings for each scene, totaling 9.75 hours of WAV files
(Dual Channel, Sample Rate: 44100Hz, Resolution: 24-bit,
Duration: 30 seconds). The evaluation dataset contains the
same acoustic scenes as the development part, 26 recordings
for each scene, totaling 3.25 hours in the same WAV format.
The performance of proposed systems was first evaluated by
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the mean accuracy of 4-fold cross validation on the develop-
ment dataset (CV in Dev.), and then by the test accuracy on the
evaluation dataset (Acc. in Eva.). Note that the testing models
were trained based on the whole development dataset.

3.2. Features

We mainly created two sets of features using different signal
processing methods. The FBank feature is based on windowed
FFT and hand-tailored Mel filters. The scalogram is based on
wavelet transform and simple downsampling methods.

3.2.1. FBank

FBank feature was extracted in contrast to scalogram. STFT
was applied on the raw signal every 20ms over 40ms windows
firstly. Then the coefficients were computed through 40 Mel-
frequency filter banks. The delta and delta-delta coefficients
to characterize variance among frames were calculated at a 9-
order window both in left and right context. The dimension of
FBank feature for a 30-second record is 1499× 2× 120, where
each dimension stands for frame numbers, two channels and
FBank coefficients correspondingly. FBank was evaluated both
on DNN and CNN.

3.2.2. Scalogram Feature

The scalogram was derived following section 2.2. The maxi-
mum window length was set as T = 370ms, recommend in
[4]. The resolution Q was determined by cross-validation pro-
cedure using simple DNN. Two downsampling methods, av-
erage pooling and maxpooling, were experimented in parallel.
The dimension of scalogram feature for a 30-second record is
162 × 2 × wavelet num, where the last dimension is deter-
mined by wavelet resolution Q.

3.3. DNN

Simple feed-forward neural networks were used to evaluate the
effectiveness of features at first. The feed-forward network had
an input layer, 3 hidden layers of 512 nodes respectively and a
softmax output layer. Each hidden layer was composed of lin-
ear transform, batch normalization[15], ReLU[16]. This simple
feed-forward network is referred as simple DNN in this paper.

3.4. CNN Architecture

Small convolutional kernels combined with maximum or aver-
age pooling enable CNN to learn high-level features. The con-
volution and pooling operations were conducted only on fre-
quency/scale axis in our experiment. It was assumed that scalo-
gram and FBank contained long-time information. For scalo-
gram feature, the time width between frames was about 186ms
. As for FBank, the differential window of delta and delta-delta
coefficients was about 380ms.

Table 4 lists the CNN layers in order. For example, the
first Conv layer represents a convolutional kernel with 2 input
channels, 4 output channels and size of 3; the first Pooling layer
represents a pooling kernel of size of 2. Batch normalization
was applied both in convolutional and linear layers. The acti-
vation function was ReLU. The pooling methods of CNN were
in accordance with the way used in the input scalogram. Every
output of convolutional layers, as well as input scalogram, was
concatenated into one vector, then fed to fully-connected layers,
finally a softmax layer with 15 units. Scalogram were labeled
and trained in a frame-wise way. To test an unknown recording,

Table 1: CNN model

Input scalogram 162× 2× wavelet num
2× 3 Conv(pad-0,stride-1)-4-BN-ReLu

2 Pooling(pad-1,stride-2)

4× 3 Conv(pad-0,stride-1)-8-BN-ReLu
2 Pooling(pad-0,stride-2)

8× 3 Conv(pad-0,stride-1)-16-BN-ReLu
2 Pooling(pad-0,stride-2)

16× 3 Conv(pad-0,stride-1)-32-BN-ReLu
2 Pooling(pad-0,stride-2)

Concatenate input and each Conv output
Flatten

Linear (512 units)-BN-ReLu

Linear (512 units)-BN-ReLu

Linear (512 units)-BN-ReLu

15-way Softmax

each frame’s log-softmax output was summed up and then the
corresponding maximum was the answer.

4. Results
4.1. FBank

We explored the classical FBank feature with simple DNN and
CNN (Table 2). The CNN architecture is described in Section
3.4 . We found that CNN gave rise to the system performance.

Table 2: Experiments on FBank

Model CV in Dev.(%) Acc. in Eva.(%)

DNN 76.5± 2.2 86.4
CNN 77.9± 4.7 88.2

4.2. Scalogram

The set of wavelet filters are determined by the resolution Q. A
larger Q generates a number of wavelets containing more fre-
quency information, but the redundancy may mislead CNN. We
explored different sets of wavelets with the same simple DNN.
At Q = 9, the average-pooled scalogram gave a best CV. accu-
racy, while max-pooled showed little variation (Table 3). We set
Q = 9 for its high CV. accuracy and small standard deviation.

Table 3: DNN experiments on resolution Q

Q Filter Num Pooling CV in Dev.(%) Acc. in Eva.(%)

8 84 Max 83.8± 2.3 87.2
9 92 Max 83.6± 1.4 88.0
10 101 Max 83.7± 2.0 88.5
8 84 Ave 82.9± 2.6 87.2
9 92 Ave 84.5± 2.8 87.4
10 101 Ave 83.6± 3.1 88.5

After adding convolutional layers, the CV. in Dev. and Acc.
in Eva. were improved(Table 4). Here we observed the perfor-
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Figure 3: Confusion matrix for best system on evaluation
dataset

mance gap between maxpooling and average pooling. Take the
office scene as an example. In the cross validation procedure,
the maxpooled scalogram with maxpooling CNN achieved a
98.6% accuracy in office scene; the average-pooled scalogram
with average pooling CNN achieved a mean accuracy of 94.7%,
which may indicate that maxpooling is good at capturing tran-
sient information and office scene may exist many short-term
events.

Table 4: DNN and CNN experiments on Scalogram with Q = 9

Model Pooling CV in Dev.(%) Acc. in Eva.(%)

DNN Max 83.6± 1.4 88.0
DNN Ave 84.5± 2.8 87.4
CNN Max 85.8± 1.7 88.5
CNN Ave 84.5± 2.3 89.7
CNN Max & Ave 85.8± 2.8 90.5

Furthermore, two sequences of convolutional layers were
deployed for average-pooling and maxpooling scalogram in
parallel. Then the concatenated output was fed into fully-
connected layers, which gave our best performance, 85.8% for
CV. in Dev. and 90.5% for Acc. in Eva.(Table 4). Here
we presented the confusion matrix of the best system on Eva.
dataset(Figure 3).

5. Discussion
This study proposed a novel strategy using CNN combined with
scalogram. It achieved an accuracy up to 90.5% for single sys-
tem on the evaluation dataset in DCASE2016. As far as we
know, the result has exceeded all submitted ASC systems in
DCASE2016, even the fusion systems(Table 5).

Table 5: ASC accuracy of art-of-state models on DCASE2016

Classifier Feature CV in Dev.(%) Acc. in Eva.(%)

CNN Scalogram 85.8 90.5
Fusion[17] MFCC 89.9 89.7
NMF[18] Spectrogram 86.2 87.7
CNN[19] FBank 79.0 86.2
SVM[20] MFCC distribution 78.9 85.9

It is believed that wavelet-filter-based features outperform

STFT-based features because wavelet can filter signal in a multi-
scale way. We deployed CNN to further extract high-level in-
formation. The architecture of convolutional layers and scalo-
gram is similar to the scattering representation in [4], but the
CNN layers learn proper filters itself. Furthermore, convolu-
tional operation can be used to avoid frequency deformation.
The frequency of sound may exhibit small fluctuations related
to various acoustic sources, and the convolution operation con-
tributes to stabilize it.

The two downsampling strategies represent two different
information, long-lasting and transient. We combined them
with CNN to generate whole acoustic patterns. Our scalo-
gram has relatively simple extraction procedure and few hand-
tailored filters. Though the system is not strictly end-to-end, an
interesting future direction is to use embedded wavelet filter in
CNN with more reasonable downsampling approaches.
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