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Abstract
The performance of spoken language identification (LID) on
short utterances is drastically degraded even though model is
completely trained on short utterance data set. The degradation
is because of the large pattern confusion caused by the large
variation of feature representation on short utterances. In this
paper, we propose a teacher-student network learning algorithm
to explore discriminative features for short utterances. With the
teacher-student network learning, the feature representation for
short utterances (explored by the student network) are normal-
ized to their representations corresponding to long utterances
(provided by the teacher network). With this learning algorithm,
the feature representation on short utterances is supposed to re-
duce pattern confusion. Experiments on a 10-language LID task
were carried out to test the algorithm. Our results showed the
proposed algorithm significantly improved the performance.
Index Terms: Knowledge distillation, transfer learning, feature
representation, short utterances, spoken language identification.

1. Introduction
Spoken language identification (LID) is a task to determine
which language is being spoken within a speech utterance [1, 2].
LID typically acts as a pre-processing stage for a wide range
of multilingual speech processing systems, such as spoken lan-
guage translation and multilingual speech recognition. In most
of these applications, LID is used in real-time scenarios so com-
putational cost is often critical. Therefore, improving the per-
formance of LID on short utterances is one of the important
tasks.

LID techniques have been widely investigated and pro-
gressed recently. I-vector techniques with conventional clas-
sifiers, such as, support vector machine (SVM), probabilistic
linear discriminant analysis (PLDA), and deep neural network
(DNN), have demonstrated their effectiveness and obtained
state-of-the-art performance in many systems, especially on rel-
ative longer utterance tasks [3, 4, 5, 6, 7, 8, 9, 10]. However,
on short utterance LID tasks, the performance of the i-vector-
based approaches often degrade dramatically. Recently, end-
to-end approaches with convolutional neural networks (CNN),
recurrent neural networks (RNN), and attention-based neural
networks have been investigated on LID tasks[11, 12, 13, 14].
For short utterance LID tasks, the end-to-end approaches have
demonstrated more impressive performance than i-vector-based
approaches [12, 13]. For example, Fernando et al. proposed
bidirectional long short term memory network (biLSTM) for
short durations (3 seconds) LID tasks by modelling temporal
dependencies between past and future frame based features in
short utterances [13]. Lozano-diez et al. used deep convolu-
tional neural networks (DCNN) for short test durations (seg-
ments up to 3 seconds of speech) [12]. Compared with long ut-
terances, the feature representation of short utterances has large

variation, that prevents the model from generalizing well. How
to improve the generalization of the model on short utterances
is still a challenge task.

In this work, we focus on short utterance (from 0.5s to 2.0s)
LID tasks using DCNN-based end-to-end approach similarly to
[12]. Generally, DCNN models include several convolution lay-
ers connected to one or several fully connected (FC) layers. The
convolution layers can be considered as feature extraction lay-
ers, and FC layers as classification layers. Different from frame
by frame training approaches, DCNN models use longer fixed
length utterances as inputs. The utterance level-based DCNN
model can capture high level discriminative representation that
is expected to be used for improving the generalization ability
of the model. However, as the input sentence becomes shorter,
the performance of the DCNN model decreases rapidly even the
model is completely trained on short utterance dataset.

Inspired by previous works of knowledge distillation [15,
16], we proposed a knowledge distillation-based training ap-
proach by transferring the feature representation knowledge of
a long utterance-based teacher model to a short utterance-based
student model. Knowledge distillation was firstly proposed by
Hinton et al. [15] by using a teacher’s softened output as soft
label for a compact/small student model training. Romero et
al. [16] proposed a hidden layer-based knowledge distillation
training, called FitNets, that uses one teacher’s hidden layer’s
output for a deeper student network training. The knowledge
distillation approaches have been already successfully applied
on many tasks, such as speech recognition and image classifi-
cation. In this work, the feature representation knowledge, cor-
responding to a hidden layer of a teacher model, is transferred
to a student model to help the student model to capture robust
discriminative information from short utterances. To the best of
our knowledge, using knowledge distillation to transfer knowl-
edge from long utterance-based teacher to short utterance-based
student for end-to-end LID tasks has not yet been studied. We
evaluated the proposed method on a 10-language dataset. Ex-
periment results indicated that the proposed method is effective
for the DCNN-based short utterance LID task.

The remainder of the paper is organized as follows. Sec-
tions 2 presents the basic knowledge distillation approach. The
proposed method is described in Section 3. In Section 4, the
results of experiments and analysis are given to evaluate the
performance of the proposed method. Conclusion is given in
Section 5.

2. Knowledge Distillation Approach
Knowledge distillation (KD) is a compression framework [15],
which trains a compact student network using the output of a
high-performance teacher network as soft label. The student
network can explore not only the information provided by true
labels, but also the knowledge learned by the teacher network.

Let x be a given input feature, and its corresponding la-
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bel y, here called hard label, is a K-dimensional one-hot
vector. K is the number of the target classes. Let q =
[q0, ..., qi, ..., qK−1] be an output softmax of a teacher network,
called soft label, that is also a K-dimensional vector, qi is the
softmax probability of the i-th class, and zi(x) is the teacher’s
pre-softmax output activation of the i-th class, called logits.
Then, we can describe the relationship of qi and zi(x) as:

qi =
exp(zi(x)/T )∑K
j=1 exp(zj(x)/T )

, (1)

where T is a temperature that is normally set to 1. Since q might
be very close to the one-hot code representation of the samples’s
hard label, a higher value of T is introduced to obtain a softer
probability distribution over classes. As T becomes large, q
tends to have a uniform distribution. The student network is
trained to optimize the following loss function:

LKD =
1

N

∑

x

((1− λ)Lhard(x,y) + λLsoft(x,q)), (2)

where λ is the weight to make a balance between the hard and
soft losses, and N represents the number of samples x. For
the classification task, cross entropy loss is used. Then, the
cross entropy-based hard and soft losses for sample x can be
described as:

Lhard(x,y) = −yT logp(x), (3)

Lsoft(x,q) = −qT logp(x), (4)

where p(x) is a K-dimensional vector with output probabil-
ity of the student model for classes, yT and qT is a transpose
operation on y and q. In the soft loss, the output of student
network is also applied with the same temperature T , when it is
compared to the teacher’s softened output q.

3. Feature Representation Knowledge
Distillation

Conventional knowledge distillation methods use one single
or ensemble multiple high-performance models as a teacher
model, and transfer the knowledge of the teacher model to a
compact student model [15, 16]. Different from the conven-
tional knowledge distillation methods which focus on training
small compact model, we focus on improving the performance
of DCNN-based LID on short utterance tasks. Compared with
LID on short utterances, the performance of LID on long utter-
ances is better. Due to duration mismatch, the long utterance-
based model cannot work well on short utterances directly.

In this work, we designed a feature representation knowl-
edge distillation (FRKD) framework by transferring the feature
representation knowledge from a long utterance-based teacher
network to a short utterance-based student network for LID
tasks. The proposed method is illustrated in Fig. 1. Same to
[16], the hidden layer-based knowledge is used to guide the stu-
dent model to capture robust discriminative feature from short
utterances.

Mathematically, we choose a hidden layer’s feature repre-
sentation with parameter set ΘT of a teacher network, where
ΘT = {WT ,bT }, and a hidden layer’s feature representation
with parameter set ΘS of a student network, and transfer the
knowledge from the teacher to the student. Then, the teacher-
student transfer learning can be optimized by minimizing the
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Figure 1: The proposed feature representation knowledge dis-
tillation framework.

following loss function:

LFRKD =
1

N

∑

xS ,xT

((1− λ)Lhard(xS ,y)

+λLkt(xT ,xS ,ΘT ,ΘS)),

(5)

where Lkt is the knowledge transfer learning loss function,
which can be defined as:

Lkt(xT ,xS ,ΘT ,ΘS) = ‖uT (xT ;ΘT )−uS(xS ;ΘS)‖1, (6)

where uT and uS are the teacher and student deep nested func-
tions up to their respective selected layers with output of param-
eter sets ΘT and ΘS , and ‖•‖1 is the L1-norm loss. Compared
with conventional knowledge distillation approaches which use
the same inputs for both teacher and student models, we use xT

as the inputs of teacher, and xS as the inputs of student, and
xS is short segments truncated from the long segments of the
input to the teacher network, i.e., xT . For example, xT is a four
second utterance, and xS is the corresponding two second utter-
ance. In FitNets, there is a regressor layer in the student model
to match the size of the teacher layer [16]. Adding the regres-
sor to student model increases the training complexity. In this
work, we focus not on building compact student model but on
improving the performance of short duration utterances, there-
fore, we apply max-pooling to keep the selected hidden layer of
the teacher and student with the same size.

The training procedure is also different from FitNets. Fit-
Nets used the transfer learning as a pre-training for the student
network. In this work, Eq. 5 is a joint learning of the cross-
entropy loss and the knowledge transfer loss. For the whole
training procedure, firstly, we train the teacher model on long
utterances by minimizing Eq. 3 with hard label. Then, the short
utterance-based student model is optimized with Eq. 5.

4. Experiments
In this section, experiments were conducted to evaluate the ef-
fectiveness of the proposed method. We used a 10-language
dataset of NICT to evaluate the proposed method. The spoken
utterances were spoken by native speakers. We split them into
training set (Train), validation set (Valid), and test set (Test).
There were 100.76 hours of training data, and 24.95 hours of
test data, totally. The average duration of each utterance was
7.6 seconds. The number of utterances for the training data was
45000, and for each language was 4500. For the validation and
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Table 1: Experimental data sets.

Language Train/Valid Test
Burmese 4500/300 ( 7.27 h) 1200 (1.81 h)
Chinese 4500/300 ( 8.50 h) 1200 (2.13 h)
English 4500/300 (12.08 h) 1200 (3.08 h)
French 4500/300 (10.75 h) 1200 (2.67 h)
Indonesian 4500/300 (11.11 h) 1200 (2.69 h)
Japanese 4500/300 ( 8.92 h) 1200 (2.20 h)
Korean 4500/300 (12.23 h) 1200 (3.00 h)
Spanish 4500/300 ( 8.84 h) 1200 (2.14 h)
Thai 4500/300 (11.96 h) 1200 (2.96 h)
Vietnamese 4500/300 ( 9.10 h) 1200 (2.27 h)
ALL 45000/3000 (100.76 h) 12000 (24.95 h)

test data, it was 300 and 1200 utterances for each language. De-
tails of the number of utterances and the data size are shown in
Table 1. The utterance identification error rate (UER) was used
as the evaluation criterion.

4.1. Implementation of baseline systems

We built baseline systems with conventional i-vector-based ap-
proaches and end-to-end deep learning approaches. The i-
vector-based methods with support vector machine (SVM) and
DNN as classifier were examined. The i-vectors were 400-
dimensional vectors that obtained on the full-length duration ut-
terances (Average 7.6s) with the script of Kaldi toolkit [17]. For
SVM classifier, we used the radial basis function (RBF) kernel
and a grid search with cross-validation following the work [18].
The DNN model were with two hidden layers with 512 neu-
rons for each, and a dropout of 0.3 was applied. The mini-batch
size was set to 128, and stochastic gradient descent (SGD) with
learning rate 0.001 was used in this experiment.

We also compared end-to-end approaches, i.e., RNN, bidi-
rectional RNN (biRNN) with the gated recurrent unit (GRU),
and a DCNN model on four second utterances. Finally, the
DCNN model was used to test on all target duration utterances,
i.e., 2.0s, 1.5s, 1.0s and 0.5s. To extract the target duration utter-
ances, power energy-based VAD was used to detect the speech,
then certain duration utterances were cut with a shift same to the
target duration. Then, 60-dimensional mel-filterbank features
were extracted for all the prepared utterances. Finally, mean
and variance normalization was applied on each utterance. For
the testing data set, only the start of certain duration was cut
based on the VAD results. For the RNN models, we tested dif-
ferent configurations (RNN and biRNN with one or two hidden
layers with 256 neurons for each) and dropout with 0.0, 0.3 and
0.5. The DCNN model used for four second utterance is illus-
trated in Table 2. For different duration utterances, we changed
the stride of max-pooling to make the last convolution layer of
all the models with the same size. For the RNN and DCNN
models, the mini-batch size was set to 32, RMSProp optimizer
with learning rate 0.001 for model optimization. The maximum
learning epoch was set to 100, and the optimal model was se-
lected using the validation data set.

4.2. Implementation of the proposed method

To evaluate the proposed method, the same DCNN models as
described in Subsection 4.1 were used. The DCNN network in-
cluded seven convolution blocks and two FC blocks. The con-
volution layers could be considered as feature extraction layers
and the FC layers as classification layers. The proposed method

Table 2: The DCNN networks used in this work for four seconds
input utterance; same padding is used for all the conv and max-
pooling layers.

Network
Input: x ∈ <400×60

conv (7×7, 16, relu), max-pooling(3×3, stride 2× 2), BN
conv (5×5, 32, relu), max-pooling(3×3, stride 2× 2), BN
conv (3×3, 64, relu), max-pooling(3×3, stride 2× 2), BN
conv (3×3, 64, relu), max-pooling(3×3, stride 2× 2), BN
conv (3×3, 128, relu), max-pooling(3×3, stride 2× 2), BN
conv (3×3, 128, relu), max-pooling(3×3, stride 2× 2), BN
conv (3×3, 256, relu), max-pooling(3×3, stride 2× 2), BN
Flatten()
FC(512, relu), BN
FC(512, relu), BN
Output: softmax(10)

Table 3: Comparison of different systems on four second (or
full-length) utterances. (UER %)

Baseline methods Valid. Test
i-vector SVM(RBF) (Avg 7.6s) - 9.09
i-vector DNN (Avg 7.6s) - 8.22
RNN(GRU)256x2 (4.0s) 6.63 7.44
biRNN(GRU)256x2 (4.0s) 7.17 7.90
DCNN (4.0s) 2.43 2.83

transferred the knowledge of feature representation (the Flatten
layer) of the teacher model to the student model. The network
was optimized with Eq. 5. For Eq. 6, we compared L1-norm
and L2-norm-based distance metric. λ was also compared with
the value of 0.1, 0.3, 0.5 and 0.7. The networks were trained us-
ing RMSProp with learning rate 0.001. The mini-batch size was
set to 32. The optimal model was selected using the validation
data set with maximum epoch 100.

4.3. Results of baseline systems
Table 3 shows the results of i-vector-based approaches with
full length utterances and RNN, biRNN, DCNN with four sec-
ond utterances. The optimal configuration of the i-vector-based
DNN was selected by comparing the different numbers of hid-
den layers and different dropout settings. We compared RNN
and biRNN by changing number of GRU layers with dropout
setting of 0.0, 0.3 and 0.5. The RNN model obtained best
result with two GRUs and dropout 0.3, and biRNN obtained
best result with two GRUs and without using dropout set-
ting. Dropout setting was also investigated on the DCNN mod-
els, using dropout could not further improve the performance

Table 4: Results (Duration match or mismatch) on different du-
ration utterances (0.5s, 1.0s, 1.5s and 2.0s) with DCNN models.
(UER %)

Models Test
0.5s 1.0s 1.5s 2.0s 4.0s

Train with 0.5s 24.01 - - - -
Train with 1.0s 39.07 13.18 - - -
Train with 1.5s 65.71 26.27 8.63 - -
Train with 2.0s 73.66 29.94 12.51 6.87 -
Train with 4.0s 75.05 45.18 26.54 15.06 2.83
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Table 5: Investigation on training student model (two seconds)
with teacher model (four seconds).(UER %)

Methods λ Lkt Valid. Test
Baseline (2.0s) - - 6.00 6.87
KD T=3 (2.0s) 0.5 - 5.57 6.02
KD T=5 (2.0s) 0.5 - 4.93 6.05
KD T=7 (2.0s) 0.5 - 5.60 6.66
KD T=3 (2.0s) 0.1 - 5.80 6.26
KD T=3 (2.0s) 0.3 - 4.70 5.69
KD T=3 (2.0s) 0.5 - 5.57 6.02
KD T=3 (2.0s) 0.7 - 5.17 5.77
FRKD (2.0s) 0.5 L2 norm 4.70 5.89
FRKD (2.0s) 0.1 L1 norm 4.83 5.67
FRKD (2.0s) 0.3 L1 norm 4.17 5.28
FRKD (2.0s) 0.5 L1 norm 4.23 5.33
FRKD (2.0s) 0.7 L1 norm 4.74 5.49

of the DCNN model. Same to the report in previous works
[11, 12], the RNN and DCNN models achieved better perfor-
mance than i-vector-based approaches on our short utterance
LID task. Compared with other systems, the DCNN model per-
formed the best on this dataset. We built DCNN models and
tested on all target short utterances, i.e., 2.0s, 1.5s, 1.0s and 0.5s.
From the results in table 5, we observed that the performance
was degraded with the decrease of the duration. By padding on
the shorter utterances, we also tested the shorter utterances with
longer utterance-based models. The results showed that the per-
formance was further degraded when the duration of training
data and test data was mismatched.

4.4. Results of the proposed method

Before examining the proposed method, we did some investi-
gation on two second utterance tasks. Firstly, investigations
were done using knowledge distillation loss function, i.e., Eq. 2,
based on the proposed teacher-student framework (Fig. 1). The
soft labels were obtained using the four second-based DCNN
model. We compared different setting of the temperature T and
λ in Eq. 2. Compared with the baseline system, the KD method
obtained 17.18% relative improvement with UER 5.69%.

In FitNets, L2 norm-based distance metric loss function
was used for hidden layer knowledge transfer learning. In this
work, we proposed to use L1 norm-based distance metric loss.
Compared with L2 norm, L1 norm has parameter selection abil-
ity for it tends to produce sparse coefficients in the solution. We
compared the performance of L2 norm and L1 norm-based dis-
tance metric by fixing λ to 0.5. The experiment results showed
that using the L1 norm-based distance metric performed better.
In table 5, we also listed the comparison of different setting of
λ. The best result was obtained when λ was set to 0.3.

Fig. 2 displays t-SNE [19] scatter plots for feature of the
selected hidden layer on the validation data. The teacher model
was the four second utterance-based model, and the baseline
and student models were built with one second utterances. From
this figure, we observed the feature of the teacher model (Fig.
2.b) were more discriminative than the baseline model (Fig.
2.a). The KD and FRKD methods improved the discriminative
of the feature. Compared with KD, FRKD obtained more dis-
criminative feature by mimicking the distribution of the teacher
model.

We summarized the results of baseline, KD, FRKD and the
combination of KD and FRKD on different duration utterance
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Figure 2: Feature distribution of the selected hidden layer with
t-SNE on validation data.

Table 6: Summary of the resutls of baseline, KD, FRKD and
combination of KD and FRKD.(UER %)

Test Baseline KD FRKD KD+FRKD
Test (2.0s) 6.87 5.69 5.28 4.70
Test (1.5s) 8.63 8.24 7.10 6.42
Test (1.0s) 13.18 13.05 12.12 11.12
Test (0.5s) 24.01 23.41 22.92 21.57

LID tasks in Table 6. For all the student models, we used the
same four second-based teacher model, and L1 norm-based dis-
tance metric was used. λ was set to 0.3 for both KD and FRKD.
T was set to 3. From the results, we observed that both KD
and FRKD improved the performance for all the target duration
utterances. The proposed method achieved 23.14%, 17.73%,
8.04% and 4.54% relative improvements than the baseline sys-
tem on 2.0s, 1.5s, 1.0s and 0.5s utterances, respectively, and KD
method achieved 17.18%, 4.52%, 0.99% and 2.50% relative im-
provements than the baseline systems. As the sentences become
shorter, the relative improvements become smaller. KD signif-
icantly improved the performance on 2.0s utterances, however,
for 1.5s, 1.0s and 0.5s utterances, it only had a little improve-
ment. Compared with the KD method, the proposed method
performed better on both 2.0s utterances but also 1.5s, 1.0s and
0.5s utterances. Combining KD and FRKD methods further im-
proved the performance. For LID tasks, the experiment results
showed that the proposed method is an effective method for im-
proving the performance on short utterances.

5. Conclusions
In this paper, we proposed a teacher-student learning algorithm
to explore discriminative feature for short utterances. With
the teacher-student network learning, the feature representation
knowledge of the long utterances was transferred to the student
model to help the student model capturing robust discriminative
feature for short utterances. Experiment results showed that the
proposed method is an effective method for short duration ut-
terance LID tasks. For future work, we will further investigate
on transfer learning for building high performance and small
compact model for short utterance LID tasks.
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