
A Knowledge Driven Structural Segmentation Approach for Play-Talk
Classification during Autism Assessment

Manoj Kumar1, Pooja Chebolu1, So Hyun Kim2, Kassandra Martinez2, Catherine Lord2, Shrikanth
Narayanan1

1University of Southern California, Los Angeles, United States
2Department of Psychiatry, Weill Cornell Medicine, New York, United States

Abstract
Automatically segmenting conversational audio into se-

mantically relevant components has both computational and an-
alytical significance. In this paper, we segment play activi-
ties and conversational portions interspersed during clinically-
administered interactions between a psychologist and a child
with autism spectrum disorder (ASD). We show that various
acoustic-prosodic and turn-taking features commonly used in
the literature differ between these segments, and hence can pos-
sibly influence further inference tasks. We adopt a two-step ap-
proach for the segmentation problem by taking advantage of
the structural relation between the two segments. First, we use
a supervised machine learning algorithm to estimate class pos-
teriors at frame-level. Next, we use an explicit-duration hidden
Markov model (EDHMM) to align the states using the posteri-
ors from the previous step. The durational distributions for both
play and talk regions are learnt from training data and modeled
using the EDHMM. Our results show that speech features can
be used to successfully discriminate between play and talk ac-
tivities, each providing important insights into the child’s con-
dition.
Index Terms: Autism spectrum disorder, audio segmentation,
explicit-duration hidden markov models

1. Introduction
Autism spectrum disorder (ASD) refers to a group of hetero-
geneous neuro-developmental disorders that are characterized
by impairments in social communication and reciprocity. Esti-
mates of ASD prevalence among children have been increasing
steadily, from 1 in 150 (2002) to 1 in 68 (2014) [1].

Computational methodologies including objective
speech/language feature analyses of conversational interactions
during diagnostic sessions combined with machine learning
[2, 3, 4] have helped validate hypotheses about behavioral
markers and have provided insights into the diagnostic model.
For instance, [5] associated subjective perception of awkward
prosody with prosodic features extracted from the child’s
speech, and showed that the features were significant in
classifying between ASD subjects and typically developing
controls. Furthermore, studies [6, 7] have illustrated significant
correlations between the interlocutor’s prosody, language
use, and discourse linguistic features and the subject’s ASD
severity.

Observational diagnostic sessions are designed to exam-
ine different socio-communicative behaviors [8, 9], and thus
involve multiple segments with different objectives. For in-
stance, the Autism Diagnostic Observation Schedule (ADOS)
[10], which is considered to be the gold standard for autism
diagnosis, contains 10-15 different activities based primarily
on the individual’s expressive language level and secondarily
on chronological age. Many studies typically analyze acous-
tic/linguistic data from a subset of these subtasks [11, 4, 12],
rather than the entire session as a whole. Therefore, manual an-

notations are necessary to segment a session before proceeding
to feature extraction tasks.

In this paper, we look at data from the recommended ad-
ministration for the Brief Observation of Social Communica-
tion Change (BOSCC). This is a 12-minute semistructured in-
teraction that involves 8 minutes of play and 4 minutes of con-
versation between an individual and an examiner. We segment
the play and talk regions by using the knowledge about the or-
der of the segments within a session. We split the problem
into two steps - using a supervised classifier built with train-
ing data, we first obtain a rough confidence score between play
and talk at each time point. Next, we find the best possible state
alignment using the confidence scores. We show that modeling
the state duration using an Explicit-Duration Hidden Markov
Model (EDHMM) provides segmentation with high accuracy
and is robust to classifier errors, thus enabling us to analyze
each of these segments individually.

2. Background
2.1. BOSCC

Brief Observation of Social Communication Change (BOSCC)
[13] is a recently proposed treatment outcome measure to track
changes in social-communication over the course of ASD treat-
ment. The scheme is designed to be applicable in a variety of
collection scenarios (clinics, homes, research labs) and captures
a broad range of behavioral features of interest. In this work, we
consider two modules which are applicable for verbally fluent
children.

A typical BOSCC session involves the child taking part
in play activities and engaging in conversation (henceforth re-
ferred to as ‘play’ and ‘talk’ respectively) with an interviewer
(examiner). During play, the child is presented with a box of
toys and is encouraged to choose one among them. The in-
terviewer allows the child to take the lead during this activity,
while also commenting on play and introducing their own ideas.
This is followed by a semi-naturalistic conversation with the
child, without the toys. The interviewer asks a few questions
but also offers leads for the child to follow up on. The BOSCC
typically involves 4 minutes of play followed by 2 minutes of
conversation, and the sequence repeats one more time, result-
ing in a play-talk-play-talk sequence lasting about 12 minutes.
We note that: (1) the segment boundaries are inherently sub-
jective, since it is not possible to specify an exact time-instant
where the segment changes from talk to play, or vice versa; and
(2) the play segments may contain substantial amount of speech
depending on how the session progresses.

Previous research has reported a close association between
play skills at an early age and linguistic development in children
with ASD [14, 15]. Further, toy play [16] was found to possess
distinct information about rates of language development. More
recently, children with ASD were shown [17] to exhibit differ-
ent levels of eye contact with the interviewer between talk and
play during BOSCC. Considering the unique insights that play
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activities can offer, and the difference in administration against
conversation portions, we hypothesize that computationally ex-
tracted features differ significantly between them, and hence it
may become necessary to segment them. In the following anal-
ysis, we demonstrate the same using audio-based features from
the literature.

2.2. Acoustic-Prosodic and Turn-Taking feature analysis

We chose acoustic-prosodic and turn-taking features from the
speech of both participants that have shown to be significantly
correlated with, and predictive of, the child’s diagnostic condi-
tion [18, 19]. We extract log-pitch and intensity contours us-
ing Praat [20] and normalize them per speaker, per session to
remove individual variability. The contours are then parameter-
ized using a second-order polynomial. The functionals (mean,
std) of the coefficients are used as prosodic features. We also
use the silence fraction, individual speaking fractions, and me-
dian latencies for both speakers as turn-taking features.

For our experiments, we consider audio from 30 BOSCC
sessions that were collected across four different clinical cen-
ters. The segment boundaries between talk and play were man-
ually annotated by one of the authors. A subset (14) of these
sessions were also annotated for speaker boundaries. We com-
pute each feature for each talk/play segment, resulting in 56
samples per feature. We compute significance between the fea-
tures from play and talk segments using the Wilcoxon signed
pair test and treat the feature distributions as non-parametric,
since the subjects do not have the same autism severity score
(based on ADOS Calibrated Severity Scores (ADOS-CSS) see
[21]). The results are presented in Table 1.

While the turn-taking features suggest that both speakers
speak longer during talk, the intensity features show inconsis-
tent trends between the child and adult. The higher intensity
variation from the child’s speech may be attributed to more ex-
citement while playing with the toys and increased presence
of non-speech vocalizations like laughter, the adult’s intensity
variations do not show a consistent trend between the segments.
Nevertheless, this warrants a closer look at the features from the
two activities.

Table 1: Significant features (p < 0.05) and their trends be-
tween ’play’ and ’talk’ activities. n.s denotes not significant

Feature
Trend during ’play’

w.r.t ’talk’
Child Adult

Speaking Fraction (%) Lower Lower
Intensity σ

(curvature, slope,
intercept)

(Higher,Higher,
n.s)

(Higher,Lower,
Lower)

3. Methods
We adopt a two-step approach towards the segmentation prob-
lem - a supervised classifier at the frame level, followed by op-
timal state alignment of play/talk segments at the session level.
The role of the classifier is to provide estimates of the class pos-
teriors at each time instant, which are used as the state emission
probabilities during the alignment process. An overview of the
segmentation system is presented in Figure 1.

3.1. Supervised Classifiers Considered

3.1.1. Support Vector Machines

Support Vector Machines (SVMs) work by estimating a max-
imum margin hyperplane that separates features from different

classes, possibly in a higher-dimensional space than the features
themselves. Application of non-linear kernel functions com-
bined with their discriminative nature have made SVMs one of
the most popular choices for off-the-shelf supervised classifiers.

3.1.2. Logistic Regression
Logistic regression estimates the probability of a categorical de-
pendent variable using one or more independent variables us-
ing the logistic function. Binary logistic regression is a natural
choice for the two-class classification considered in this work
and is considered robust to outliers.

3.1.3. Neural Networks
Neural networks have outperformed traditional learning
paradigms in a large number of domains including speech
recognition, computer vision, and natural language processing.
Considering the limited availability of training data, we experi-
ment with a simple architecture in this work.

3.2. Finding optimum state alignment

Hidden Markov models (HMMs) have been a popular model-
ing choice in speech processing applications, specifically for
speech recognition. A Hidden Markov Model (HMM) is dou-
bly stochastic - both the underlying state duration and the ob-
servation given state are modeled by probability distributions.
In this work, the observation sequence is the feature representa-
tion across a session and the state sequence is represented by the
play/talk label at every frame. Given an observation sequence
o1:T , the problem of computing the optimum underlying state
sequence s1:T for an HMM can be efficiently solved using the
Viterbi alogorithm.

However, the definition of HMMs implicitly assumes that
the state durations follow a geometric distribution. This be-
comes a limiting factor when the durations of sound units (e.g
phonemes) need to be modeled. Hidden semi-Markov models
(HSMMs) were first proposed [22] as an alternative to HMMs
in speech recognition. In its most generic form, an HSMM is
defined [23] using λ={a(i,d′)(j,d), bj,d(vk1:kd), πi,d}, where

a(i,d′)(j,d) = P [S[t+1:t+d] = j|S[t−d′+1,t] = i]

bj,d(vk1:kd) = P [ot+1:t+d|St+1:t+d = j]

πi,d = P [S[t−d+1:t] = j], t ≤ 0, d ∈ D
(1)

S[t+1:t+d] = j denotes that state j starts at time t+ 1 and ends
at time t + d. D is the set of integers representing possible
state durations, and vk1:kd represents the set of observable se-
quences V × V × ..V , with V = {v1, v2, ...vk} being the set
of observable values. An important property of HSMM is that a
single state can last for multiple time units, emitting a sequence
of observations, unlike the conventional HMM.

Under the assumptions that the transitions from state i to j
are independent of the duration of state i, and the duration of
state j is independent of the previous state, a(i,d′)(j,d) reduces
to aijpj(d) where pj(d) represents the durational probability
distribution for state j; resulting in the EDHMM. Similar to the
basic HMM, dynamic programming algorithms exist for finding
the optimum state sequence in EDHMM. We define δt(j, d) as
the maximum likelihood that the observed state sequence until
t ends in state j with duration d.

δt(j, d) = max
s1:t−d

P [s1:t−d, S[t−d+1:t] = j, o1:t|λ]

= max
i∈S\j
d′∈D

δt−d(i, d′)aijpj(d)bj,d(ot−d+1:t)
(2)

The previous state selected by δt(j, d) is recorded using
Ψt(j, d) = (t − d, i∗, d∗) where i∗ is the previous state, d∗
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Figure 1: Illustrating the two-step approach involving a supervised classifier and a state alignment system

is its duration and (t − d) its ending time. Note that i∗ and d∗

are obtained as the solutions for (2).

Algorithm 1: Estimating optimum State Sequence for
EDHMM

Inputs:
aij ∀i, j ∈ S ⇒ transition probability
bj(ot) ∀j ∈ S,∀t ∈ [1, T ]⇒ emission probability
pj(d) ∀j ∈ S,∀d ∈ [1, T ]⇒ durational distribution
Output:
x ⇒ state sequence
Initialize:

1 δt(j, d) = −∞ ∀t, d ∈ [1, T ], ∀j ∈ S
2 Ψt(j, d) = (0, 0, 0) ∀t, d ∈ [1, T ], ∀j ∈ S
3 for t = 2 : T do
4 for d = 1 : t do
5 for j = 2 : |S| do
6 Qi,d′ = −∞ ∀i ∈ S,∀d′ ∈ [1, T ]
7 for d’ = 1:T do
8 i← j − 1
9 Qi,d′ ← δt−d(i, d′) + log aij +

log pj(d) + Σt
k=t−d:t log bj(ok) ;

// Viterbi update

10 end for
11 i∗, d∗ ← argmaxi,d′(Qi,d′)

12 δt(j, d)← Qi∗,d∗

13 Ψt(j, d)← (t− d, i∗, d∗)
14 end for
15 end for
16 end for
17 j∗, d∗ = argmaxj,d(δT (j, d)) ; // Backtracking

18 tprev, jprev, dprev ← (T, j∗, d∗)
19 x← (tprev, jprev, dprev)
20 while tprev > 0 do
21 x = x

⋃
Ψtprev (jprev, dprev)

22 (tprev, jprev, dprev)← Ψtprev (jprev, dprev)
23 end while

We illustrate the different ways of modeling play and talk
activities in a BOSCC session in Figure 2. Under the assump-
tion of a left-right HMM (as is the case of this work), we can
improve the computational efficiency at (2) by constraining i to
be the previous state of j [24, 25]. We provide the algorithm
for finding the optimum state sequence using EDHMM in Al-
gorithm 1.

P T P T

(a)

P T P T

(b)
Figure 2: Modeling a typical BOSCC session using a HMM
(a) and EDHMM (b). Each state in HMM corresponds to a
single observation frame, while EDHMM allows for a sequence
of observations per state. P → Play, T → Talk

4. Experiment
As mentioned in Section 2, 30 BOSCC sessions were manu-
ally annotated for play and talk segment boundaries. 13 dimen-
sional Mel frequency cepstral coefficients (MFCCs) were ex-
tracted using short-time windows of length 100ms and shifted
every 50ms. The features were normalized to have zero mean
and unit variance per BOSCC session to remove any session-
related variabilities. In order to capture information from a large
enough time frame, we compute the mean and standard devia-
tion of the coefficients every 2 seconds, resulting in a 26 dimen-
sional vector. This feature representation is used to train the
supervised classifiers and estimate class posteriors for aligning
HMM states.

Among the supervised classifiers (Part 1), we use an SVM
with RBF kernel for the nonlinear feature transformation. Pos-
terior probabilities are estimated using the Platt scaling method
[26]. In the case of the neural network, we use 2 hidden lay-
ers with 32 neurons each and a rectified linear function for the
activation. During the training phase, network connections are
randomly dropped with a probability of 0.2 in order to reduce
effects of overfitting. The network is optimized with Adam [27]
to minimize the binary cross entropy loss. Training is performed
for 30 epochs using a batch size of 128. Since the duration of
play activities is more than talk, we randomly resample features
from the latter during the training phase for all supervised clas-
sifiers to account for class imbalance.

We experiment with both conventional HMM and EDHMM
for finding the optimal state sequence, using the models pre-
sented in Figure 2. The state transition probabilities are esti-
mated using the labels from training data for both models. How-
ever, we note that the self transition probability values are irrele-
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vant in the case of EDHMM since one state emits a sequence of
observation vectors instead of self-transition. We use the class
posteriors estimated from Part 1 for the emission probabilities.
Further, we estimate the durational distributions for both activ-
ities by normalizing and smoothing the histograms of durations
(Figure 3) obtained from manual annotations.

Figure 3: Durational densities for play and talk activities col-
lected from all 30 sessions represented using probability mass
functions. Similar distributions were estimated at every fold us-
ing the training data.

The sessions are split into 6 folds, with the first five folds
treated as training data, and the sixth fold treated as test data.
The test fold is switched so that every session is considered as
test data once during the entire experiment. We report the mean
frame-level accuracy to evaluate segmentation performance at
different stages of experimentation. For the baseline system,
we smooth the decisions from the supervised classifier using a
median filter. At each fold, we treat a subset (5 sessions) of
the training set as the development set. 20 sessions are used for
training the classifier, the filter window size that maximizes ac-
curacy for the development set is chosen as the optimal window
size, and is used to smooth the predictions for test set.

4.1. Results and Discussion

From Table 2, we notice that the proposed EDHMM based ap-
proach provides the best results overall. All supervised classi-
fiers (Part1) are only able to achieve a moderate improvement
in classification accuracy over majority (67.30%). The primary
reason is perhaps due to the presence of significant talking re-
gions during the play activities and background noises from fur-
niture during talk activities which might resemble the toy noises
during play. We do not aim for perfect classification and depend
on the state alignment to correct the errors made at this stage.

Smoothing the predicted labels (the baseline system for
segmentation) improves the accuracy consistently across clas-
sifiers. Although it provides a better estimate for the segmenta-
tion when play/talk order is unknown, the performance is still
not satisfactory and necessitates an alignment system.

Table 2: Mean frame-level accuracy (%) for different choices of
supervised classifiers, and at different stages of segmentation.
‘Part1’ denotes the classifier, possibly one among SVM, logReg
and Neural Network.

System SVM Neural Net LogReg
Part1 74.04 74.82 73.36

Baseline (Part1+Smooth) 79.60 78.51 82.02
Part1 + HMM 70.08 69.39 69.60

Part1 + EDHMM 87.97 87.95 87.04
Part1 + EDHMM (2σ) 91.26 89.58 91.03

The HMM (Part1 + HMM) system performed worse than

using only the supervised classifier. Upon closer inspection, we
found that the HMM was unable to align most of the sessions,
and predicted play activity (the first state) for the entire duration.
We suspect that the low values for state transition probabilities
(Ptalk→play ≈ 0.015, Pplay→talk ≈ 0.007) proved insuffi-
cient to correct for errors during frame classification from Part
1. In contrast, the EDHMM constrains the state durations us-
ing the duration densities learnt from the training data. It was
able to segment the sessions significantly better than using only
the supervised classifier and the baseline. Removing outliers
(µ ± 2σ) from the durational densities for both play and talk
from the training data further improved the accuracy consis-
tently for all supervised classifiers.

However, we note that the EDHMM aligned only 3 activi-
ties for 6/30 sessions. Further analysis revealed that the super-
vised classifier had significant errors while making decisions at
frame level. Figure 4 (bottom) shows an example of one such
session, as opposed to a session with near-perfect alignment
(top). The neural network is used as the supervised classifier
in both cases. The network predicts noisy labels (during Part1)
for a prolonged duration within the second play activity, which
resulted in highly incorrect segment boundaries.
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Figure 4: State sequence predicted by the EDHMM (solid, black
line) is affected by mistakes in class posteriors (continuous, blue
curve). Ground truth labels are indicated using the background
colors and the baseline is represented with broken red line

5. Conclusions
We explored the task of segmenting a semi-structured, natural-
istic interaction between a psychologist and a child with ASD.
The play and talk activities are designed to create opportunities
to elicit varying socio-communicative behaviors, and hence the
patterns of interactions between the dyads may vary across these
activities. We first showed that audio-based features used in the
literature were significantly different between play and talk ac-
tivities. Using the knowledge of play/talk order, we modeled
the session using an explicit duration hidden markov model. We
show it is possible to reliably segment using a two-step method-
ology.

We observe that although the EDHMM is robust to errors,
there is room for improvement in terms of classifier accuracy.
Further work will consider feature representations and algo-
rithms robust to noise conditions, including any discriminative
information from the lexical modality between the two activi-
ties. We also aim to investigate the relation between the auto-
matically measured speech dynamics of interaction within each
activity and the childs specific and overall social communica-
tion skills as evaluated by trained human coders.
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