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Abstract
This paper presents an improved deep embedding learning
method based on convolutional neural network (CNN) for short-
duration speaker verification (SV). Existing deep learning-
based SV methods generally extract frontend embeddings from
a feed-forward deep neural network, in which the long-term
speaker characteristics are captured via a pooling operation over
the input speech. The extracted embeddings are then scored via
a backend model, such as Probabilistic Linear Discriminative
Analysis (PLDA). Two improvements are proposed for fron-
tend embedding learning based on the CNN structure: (1) Mo-
tivated by the WaveNet for speech synthesis, dilated filters are
designed to achieve a tradeoff between computational efficiency
and receptive-filter size; and (2) A novel cross-convolutional-
layer pooling method is exploited to capture 1st-order statistics
for modelling long-term speaker characteristics. Specifically,
the activations of one convolutional layer are aggregated with
the guidance of the feature maps from the successive layer. To
evaluate the effectiveness of our proposed methods, extensive
experiments are conducted on the modified female portion of
NIST SRE 2010 evaluations, with conditions ranging from 10s-
10s to 5s-4s. Excellent performance has been achieved on each
evaluation condition, significantly outperforming existing SV
systems using i-vector and d-vector embeddings.
Index Terms: speaker verification, convolution neural network,
dilated convolution, cross-convolutional-layer pooling

1. Introduction
Speaker verification (SV) is the task of determining whether the
claimed identity of a speaker matches an enrolled identity, ac-
cording to their speech. A typical SV system consists of a fron-
tend embedding learning stage and a backend modeling stage.
A low-dimensional embedding that is rich in speaker informa-
tion is extracted in the frontend learning stage, and the similar-
ities between embeddings are computed for verification by the
backend modelling stage.

For decades, the most successful SV systems have relied
on i-vectors with a PLDA backend [1, 2, 3, 4, 5, 6], which
model speaker representations and channel variability in a low-
dimensional space. An i-vector is learned through a pipeline
of generative modelling, as shown in Section 2. Despite excel-
lent performance on long-duration evaluations, the effectiveness
of i-vectors degrades dramatically for short-duration record-
ings [7, 8].

Several methods based on deep learning have recently been
proposed to extract frontend embeddings for short-duration
SV [9, 10, 7, 8, 11]. In [9], deep neural networks (DNNs)
were employed to learn speaker embeddings, termed d-vectors.

In [7, 11], deep CNNs were exploited to model long-term tem-
poral dependencies. CNNs were shown to have better discrim-
inative ability than DNNs[12], leading to a certain robustness
to variability caused by different channels, gender and speech
content. After training, d-vectors are extracted by averaging the
last hidden layer activations for enrolment and test recordings.
In [10, 8], aggregation was improved by incorporating variance
information into speaker embeddings via statistical pooling.

However, existing deep learning methods still have several
shortcomings. One drawback is the dilemma between learning
efficiency and receptive-field size. To acquire a large receptive-
field size, a CNN may require many filters with large kernel
size, or many layers, which may be inefficient and difficult to
converge. Another weakness is that average-pooling methods
for aggregating frame-level features are insufficient, since only
0th-order statistics are utilized. Recently, statistical pooling has
shown good performance [10, 8], and hence we aim to exploit
this through a better aggregation method. Our proposed im-
proved deep embedding learning architecture is shown in Fig 1.

Its architecture is based on a fully convolutional network
structure, with two main improvements. Firstly, the dilated fil-
ters are able to achieve a better tradeoff between computational
efficiency and receptive-filter size. This is mainly inspired by
WaveNet [13], in which a dilated causal CNN is exploited to
efficiently enlarge the receptive-field size with low computation
complexity. It in essence, is similar to the time-delay architec-
ture in the 1D-CNN [14]. The major improvement comes from
dilated filters that are more flexible in both the temporal and
frequency domain. Secondly, a novel cross-convolutional-layer
pooling method is proposed for better embedding learning. This
uses the feature maps of a higher layer to guide the aggregation
of activations from a convolutional layer. This successive layer
can be viewed as a probabilistic discriminative model for deriv-
ing 1st-order statistics.

In this paper, we are interested in short-duration text-
independent SV, similar to [11]. It is worth noting that it is easy
to extend from this scenario in future, to other SV tasks such as
text-dependent and long-duration SV. To demonstrate the effec-
tiveness and robustness of the proposed method, we have con-
ducted extensive evaluations of short-duration SV with exper-
imental conditions ranging from 10s-10s to 5s-4s. Excellent
performance has been achieved in each condition when com-
pared to state-of-the-art i-vector and other d-vector embedding
methods.

The remainder of the paper is organized as follows. Section
2 describes i-vector baseline, Section 3 details the CNN-based
SV system. Experimental results and discussion follow in Sec-
tion 4 before Section 5 concludes the paper.
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Figure 1: Architecture of proposed CNN

2. Review of i-vector based SV
SV systems based on i-vectors with a PLDA backend currently
achieve state-of-the-art performance [4]. In these systems, the
i-vector is learned via a pipeline of generative modeling includ-
ing: (1) a universal background model (UBM) training, which
is used to collect sufficient statistics, and (2) a large loading ma-
trix learning, which projects high-dimensional sufficient statis-
tics i.e., supervectors to a low-dimensional space that contains
speaker information and channel variability. Specifically, given
an utterance, the speaker-dependent GMM supervector can be
defined as:

M =m+ Tw (1)

where m is the speaker-independent supervector, taken from
the UBM. T is loading matrix with low rank, seen as the total
variability matrix. Andw is the speaker and channel factor with
a standard normal distributionN(0, I).

However, it is known that for short duration SV, the statis-
tics are not sufficient for reliable i-vector learning, which leads
to degraded performance [15]. Furthermore, the generative
models obtained via unsupervised learning methods may be im-
proved with discriminative models, e.g., d-vectors learned by
DNN or CNN.

3. An improved deep speaker embedding
framework

3.1. Overview

We propose an improved CNN-based deep embedding learn-
ing method for short-duration SV. The network architecture is
depicted in Fig. 1. The dilated convolution enables the net-
work to learn long-term temporal content with low computa-
tional complexity. Frame-level features are then aggregated by
cross-convolutional-layer pooling, which is designed to exploit
1st-order statistics. The proposed CNN is then trained to dis-
criminate variable-length input features between speakers in an
end-to-end manner. After training, speaker embeddings are ex-
tracted, and similarity scores are calculated with a PLDA back-
end.

3.2. Dilated convolution

The dilated convolution was originally proposed for wavelet de-
composition to extract dense features [16]. It has also been
widely used in image segmentation to increase image resolution
[17, 18, 19]. More recently, WaveNet utilized dilated convolu-
tion to enlarge the receptive field in speech synthesis [13].

The main idea of dilated convolution is to insert “holes” in
convolutional kernels so as to enlarge the receptive field. The
dilated convolution enables the convolutional kernels to filter
on a larger effective area than its own size. Its receptive-field

size implies a convolution with a large kernel generated from
an original kernel by dilating it with zeros, and is more com-
putationally efficient than simply increasing the original kernel
size. A dilation factor, defining the size of dilation, of 1, equates
to the standard convolution.

In this paper, we propose an efficient dilated CNN frame-
work. We stack the dilated convolutional layers to obtain large
receptive field with just a few layers, which is highly computa-
tionally efficient. The network can model long-term temporal
dependencies through the enlarged network receptive field. Di-
lated convolution enables a tradeoff to be found between learn-
ing efficiency and receptive-field size. The setup of dilation is
described in Section 4.2, where an intuitive exponential increase
in dilation factor leads to an exponentially increased receptive-
field size for each CNN layer.

3.3. Cross-convolutional-layer pooling

We exploit a novel cross-convolutional-layer pooling method
to capture 1st-order statistics for modelling long-term speaker
characteristics. The cross-layer pooling method is motivated by
statistical pooling, in which high order statistics can be used to
improve performance. The cross-convolutional-layer pooling
step resides within the dotted box in the centre of Fig. 1.

The insight to perform cross-convolutional-layer pooling is
that it can aggregate features across different layers [20], with
formation of cross-convolutional-layer pooling defined as:

PA,B = P (FA,FB) (2)

where FA and FB are feature maps derived from different lay-
ers in a hierarchical architecture (written as FA layer and FB

layer respectively). The shape of FA and FB are NA × CA

and NB × CB respectively (reshaped from HA ×WA × CA

and HB × WB × CB respectively). PA,B is the output of
cross-convolutional-layer pooling with shape 1× (CA × CB).
Furthermore, PA,B can be viewed as the pooled features by
concatenating the pooled features of each channel:

PA,B = [P1,P2, ...,Pc, ...,PCB ] (3)

where, c = 1, 2, ..., CB , the shape of Pc is 1 × CA, and Pc is
defined as:

Pc =

NA∑

t=1

FB
t,cF

A
t (4)

The shape of FA
t is 1 × CA, and can be considered as the tth

feature of FA. The FB
t,c is the tth feature on the cth channel of

FB . The correspondence between FB
t,c and FA

t is defined as:

FB
t,c = fc(F

A
t ) (5)

where, fc is the nonlinear mapping function of FB layer. If we
review FB layer is a phonetic recognition extractor, and set the
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Table 1: Details of CNN architecture

conv1 conv2 conv3 conv4 conv5 embedding fc
512@23× 5 512@1× 3 512@1× 3 512@1× 1 512@1× 1 512 300

posterior γt,c = FB
t,c/NA(t = 1, 2, ..., NA, c = 1, 2, ..., CB),

γT
c = [γ1,c, γ2,c, ..., γNA,c], then (4) could be rewritten as:

Pc =
1

NA

NA∑

t=1

γt,cF
A
t (6)

which in turn can be viewed as 1st-order Baum-Welch statistics
(FA and FB are all mean-normalized). fc can then be im-
plicitly reinterpreted as a probabilistic discriminative model for
deriving 1st-order statistics. In summary, the FB layer is used
as a guide for statistical aggregation of layer FA.

Before being fed into the subsequent layer, the resulting
cross-convolutional-layer vectors are passed through a signed
square root step, followed by l2 normalization.

3.4. Architecture of proposed CNN

The architecture of the proposed CNN is depicted in Fig. 1. The
network inputs are raw MFCC features and there are five convo-
lution layers followed by cross-convolutional-layer pooling. A
fully connected layer named the embedding layer is inserted to
extract deep speaker embeddings. The last layer is a fully con-
nected layer, fed into the softmax output layer. The nonlinear
function is ReLu, and BN [21] is applied to every layer.

The network is trained to discriminate between training
speakers with cross-entropy loss. After training, speaker em-
beddings are extracted from embedding layers. The details of
the CNN architecture are summarized in Table 1 where a convo-
lution of 512@23×5, means that the number of kernels is 512,
and the kernel size is 23×5. The padding and stride of each
convolution are 0 and 1 respectively.

4. Experiments
4.1. Dataset

This paper focuses on short-duration SV, where both sides of the
verification trials are short-duration recordings. We evaluate the
performance of the female portion of the NIST 2010 SRE eval-
uation [22], which is the same as [11]. To be comparable with
state-of-the-art approaches [8, 11], our enrolment sets are cut
into two different durations, e.g., 10s and 5s, where we select
the first 10s and 5s respectively from original recordings, as de-
termined by VAD. Similar to enrolment, the test recordings are
truncated to the first T ∈ {10, 5, 4}s of speech. In this paper,
we term 10s enrolment and 10s test condition as 10s-10s, fol-
lowing notation in [11], and apply other testing conditions sim-
ilarly. Training datasets are from NIST04-08 plus a portion of
Switchboard including male and female speakers. We construct
the training dataset by discarding any recording that is less than
5 seconds long and any speaker with fewer than 8 recordings.
After that, there are 34446 recordings of 2253 speakers remain-
ing.

4.2. Experiment setup

In order to evaluate the performance of our proposed method,
we compare several state-of-the-art SV systems. The training
dataset for all systems is the same. For embedding systems

based on neural networks, the input features are raw MFCCs of
dimension 23, and are all mean-normalized. An energy-based
VAD is applied to filter out silent frames. Before being input to
the network, input features are sliced into short durations rang-
ing from 2s to 4s, generating 3400 features per speaker. We
utilize SGD to optimize the network with a momentum rate
of 0.9. The batch size is 64, the initial learning rate is 0.1,
and this is multiplied by 0.1 with every epoch. All of the net-
works are trained within 5 epochs to converge. After training,
the LDA and PLDA backends are employed to calculate scores.
The LDA dimension is 100 and scores are not normalized. We
trained the CNN by using Pytorch [23]. The six comparison
systems are;

I-vector: The training dataset for the i-vector system is the
same as the embedding system based on the neural network.
Feature vectors are extended with delta and delta-delta to be-
come 69 dimensional, which is a standard procedure. The UBM
is a 2048 component full-covariance GMM and the i-vector di-
mension is 400. The LDA and PLDA backend is the same as in
other systems and the system is implemented using Kaldi [24].

CNN-G-D1/D2: This is the first baseline. It follows Fig. 1
except that the cross-convolutional-layer pooling is replaced
with basic single-layer average pooling. In CNN-G-D1, the di-
lation factors of convolutional layers are all 1. In CNN-G-D2,
the dilation factors of convolutional layers are set to 1, 2, 4, 1
and 1 respectively.

CNN-S-D1/D2: This is the second baseline. In this case we
replace the cross-convolutional-layer pooling with single-layer
statistical pooling (i.e. this also has no cross-layer connection).
In CNN-S-D1, the dilation factors of convolutional layers are
all 1. In CNN-S-D2, the dilation factors of convolutional layers
are 1, 2, 4, 1 and 1 respectively.

CNN-C-D1/D2: This is our proposed method, as depicted
in Fig. 1. In CNN-C-D1, the dilation factors of convolutional
layers are all 1. In CNN-C-D2, the dilation factors of convolu-
tional layers are 1, 2, 4, 1 and 1 respectively.

TDNN: Snyder et al. [8] obtained state-of-the-art perfor-
mance in short-duration SV evaluation. The code1 was released
by the author. We retrained their model on our dataset using
Kaldi, and used the same setup described in their paper [8].

VGGnet: Bhattacharya et al. [11] demonstrated the supe-
riority of deep CNNs over i-vectors for short-duration testing
trials. Since they did not release their code, we reproduced the
results that their paper reported for identical testing conditions.
However it should be noted that their training dataset was twice
as large as ours, giving their system a potential advantage.

4.3. Results for the 10s enrolment condition

In this section, we evaluate performance for 10s enrolment con-
ditions, described in Table 2. We do not show the performances
of CNN-G-D1 and CNN-S-D1 for the sake of clarity, since their
performance is inferior in each case to the -D2 system variants.

From Table 2, we can see that when we aggregate fea-
tures by average pooling, performance dramatically degrades
compared to the i-vector system. This is consistent with [9].

1https://david-ryan-snyder.github.io/2017/10/
04/model_sre16_v2.html
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Table 2: EER(%) of SV in 10s enrolment condition

System
Condition

10s – 10s 10s – 5s 10s – 4s

I-vector 17.95 20.77 22.18
CNN-G-D2 28.38 32.23 34.06
CNN-S-D2 21.47 26.05 27.81
CNN-C-D1 17.60 20.77 22.88
CNN-C-D2 16.54 20.65 21.83

CNN-C-Fusion 14.78 17.60 19.36
TDNN 16.9 20.42 21.12

VGGnet 17.51 – –

The CNN-S-D2 system achieves a large 18%∼24% relative im-
provement over CNN-G-D2. Clearly, statistical pooling, which
effectively incorporates variance information, enables an im-
provement in performance. Compared with CNN-S-D2, the
CNN-C-D2 system then obtains a further 22%, 20% and 21%
relative improvements in 10s-10s, 10s-5s and 10s-4s evaluation
respectively. In fact, CNN-C-D2 outperforms the i-vector sys-
tem for each evaluation condition.

When we compare CNN-C-D2 with CNN-C-D1, the EER
improves as expected; this demonstrates that dilation enlarges
the receptive field to yield benefit for the SV task.

CNN-C-D2 obtains state-of-the-art performance in the 10s-
10s evaluation, and achieves comparable performance to TDNN
in the 10s-5s and 10s-4s evaluations as well. However when we
fuse CNN-C-D1 and CNN-C-D2, termed CNN-C-Fusion, we
obtain better performance for each evaluation. In fact CNN-C-
Fusion system improves EER compared to the i-vector system
by 17%, 15% and 12% in 10s-10s, 10s-5s and 10s-4s evalua-
tions respectively.

Table 3: EER(%) of SV in 5s enrolment condition

System
Condition

5s – 10s 5s – 5s 5s – 4s

I-vector 20.77 23.23 25.00
CNN-C-D1 20.07 25.35 25.75
CNN-C-D2 19.01 22.53 23.59

CNN-C-Fusion 17.60 20.42 21.83
TDNN 19.01 23.23 25.70

VGGnet – 23.16 –

4.4. Results for the 5s enrolment condition

In this section, we evaluate performance for 5s enrolment con-
ditions, described in Table 3. We omit the performance of the
CNN-G-D1/D2 and CNN-S-D1/D2 for the sake of clarity, since
they are similar to 10s enrolment in Section 4.3.

Table 3 shows that the proposed CNN-C-D2 system obtains
state-of-the-art performance in each evaluation. In Section 4.3,
TDNN obtained similarly good performance in the 10s-5s and
10s-4s evaluation, however, for this shorter duration enrolment,
TDNN is less robust. TDNN performance is slightly worser
than the i-vector system in the 5s-4s evaluation, and CNN-C-
D2 performs better than all tested systems for all experimental
conditions.

VGGnet reported state-of-the-art performance in 5s-5s
evaluation in [11], however the CNN-C-D2 system is shown
to perform better for this evaluation.

When we then fuse the CNN-C-D1 and CNN-C-D2 sys-
tems, termed CNN-C-Fusion, we gain 15%, 12% and 12% rel-
ative improvements for the 5s-10s, 5s-5s and 5s-4s evaluations
respectively.

4.5. Discussion

CNN-C-D2 demonstrates consistent improvements over CNN-
C-D1 since it has a larger receptive field. The dilated convo-
lution enlarges the filter size by dilating the filter with zeros.
However, it is possible that the two networks focus on differ-
ent patterns. The filters enlarged by dilation tend to learn global
features or patterns, while filters with no dilation are more prone
to learn local features. We infer that the two networks are thus
learning some information that may be complementary. This
appears to be confirmed by the excellent performance achieved
by the fusion system (termed CNN-C-Fusion).

We have compared the performance of average and statis-
tical pooling. If we see from the Baum-Welch statistics point
of view, average pooling can be viewed as 0th-order statis-
tics, whereas statistical pooling incorporates variance which can
be viewed as being 2nd-order statistics. The results conform
that high-order statistics are significant for short-duration SV.
However, it does not make full use of covariance, since it as-
sumes that the covariance is diagonal. We thus proposed cross-
convolutional-layer pooling to capture 1st-order statistics for
modelling long-term speaker characteristics. Specifically, the
activations of one convolutional layer are aggregated with the
guidance of its successive layer. This technique achieved state-
of-the-art performance in each evaluation condition. The results
clearly demonstrate that cross-convolutional-layer pooling is a
more efficient method for the aggregation of frame-level fea-
tures.

5. Conclusions
In this paper, we present an improved deep embedding learning
method based on CNN for short-duration SV task. Two main
improvments have been proposed based on a fully convolu-
tional network structure. Firstly, the dilated filters are designed,
which enable the convolution layers to learn long-term tem-
poral context information with relative low computation com-
plexity. Secondly, a coss-convolutional-layer pooling method
is proposed to aggregate the frame-level convolutional features,
which effectively derives 1st-order statistics for better embed-
ding learning. The proposed CNNs are trained to discriminate
variable-length input features between speakers in an end-to-
end manner.

To evaluate the effectivness of learned embeddings, exten-
sive experiments have been conducted on the modified female
part of the NIST 2010 SRE evaluation, consisting of 10s and
5s enrolment conditions. The state-of-the-art performance has
been achieved in each evaluation condition. Specially, results
show a 17% and 12% relative improvement for 10s-10s and 5s-
5s evaluations respectively compared with the i-vector system.
In future work, we aim to extend the proposed model to a larger
number of speakers, to further investigate the data dependency
of the embedding learning approaches.
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