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Abstract
In previous work, we have shown that using articulatory
features derived from a speech inversion system trained using
synthetic data can significantly improve the robustness of
an automatic speech recognition (ASR) system. This paper
presents results from the first of two steps needed for exploring
if the same will hold true for a speech inversion system trained
with natural speech. Specifically, we developed a noise robust
multi-speaker acoustic to articulatory speech inversion system.
A feed forward neural network was trained using contextu-
alized mel-frequency cepstral coefficients (MFCC) as the input
acoustic features and six tract-variable (TV) trajectories as the
output articulatory features. Experiments were performed on
the U. Wisc. X-ray Microbeam (XRMB) database with 8
noise types artificially added at 5 different SNRs. Perfor-
mance of the system was measured by computing the corre-
lation between estimated and actual TVs. The performance of
the multi-condition trained system was compared to the clean-
speech trained system. The effect of speech enhancement on
TV estimation was also evaluated. Experiments showed a 10%
relative improvement in correlation over the baseline clean-
speech trained system.
Index Terms: noise robust speech inversion, vocal tract
variables, deep neural networks, articulatory features

1. Introduction
Speech inversion refers to the inverse problem of retrieving
the articulatory dynamics responsible for the produced speech
signal. It is a topic of interest that has applications in speech
therapy, pronunciation training, robust Automatic Speech
Recognition (ASR), and speech synthesis. The non-linearity
and the non-uniqueness of the inverse mapping make speech-
inversion a challenging task [1]. In building a good speech
inversion system, it is imperative that we use the most suitable
representations for acoustic and articulatory features as well as
the algorithm appropriate for the complex non-linear mapping.

Previous studies have explored which acoustic features
best represents the signal for the speech-inversion task. It
was shown that Mel-Frequency Cepstral Coefficients (MFCCs)
perform better than Perceptual Linear Prediction (PLP) and
mel-spectrum (MELSPECT) features for the TV estimation
process [2, 3].

Most research in speech inversion has been focused on
developing accurate speaker-dependent systems. Approaches
such as codebook search [4], feedforward neural networks,
and Mixture Density Networks [5] have been found to work
well for speaker-dependent speech inversion. There have
been several attempts to perform speaker independent speech
inversion systems [6, 7, 8, 9], but most of such studies have
been limited to two speakers from the MOCHA-TIMIT dataset
[10].

Articulatory features have been shown to provide noise
robustness to ASR systems [11, 12, 13, 14, 15, 16]. Mitra

et.al. (2017) [16] trained Deep Neural Network (DNN) and
Convolutional Neural Network (CNN) based speech inversion
systems on a clean and noise added multi-speaker simulated
synthetic speech dataset generated using the Task Dynamics and
Applications (TADA) system [17]. They showed that the articu-
latory features estimated by the multi-condition-trained speech
inversion system combined with Gammatone filterbank features
through a hybrid convolutional neural network (HCNN) archi-
tecture reduced the word error rates for each of the clean,
noisy, and channel-mismatched conditions, providing state-of-
the-art results on the Aurora 4 database. The same archi-
tecture provided significant improvement in performance for the
SWB-1 speech recognition task when articulatory features were
used with the Damped Oscillator Cepstral Coefficients (DOCC)
features, compared to using the DOCC features alone [18].

Motivated by previous work on synthetic speech trained
inversion system, in this paper, we focus on training a speaker
independent noise robust speech inversion system on natural
speech articulatory data. The speech data collected during real-
time MRI [19] contains a significant amount of noise due to
the MRI machine and speech enhancement methods have been
proposed to reduce the noise in the recorded speech of rt-MRI
articulatory datasets [20]. The noise robust speech inversion
proposed in this paper can be applied to train speech inversion
systems on the re-MRI datasets without requiring a speech
enhancement preprocessor. To the best of our knowledge, the
work presented in this paper is the first attempt at training a
noise robust speaker independent speech inversion system using
real speech data. We used the multi-speaker XRMB dataset for
our experiments. We generated a noisy version of the XRMB
dataset by electronically adding 8 different noise types at 5
SNRs. Further details about the dataset generation is explained
in section 2. We used a feedforward neural network architecture
to learn the mapping from acoustics to articulatory trajectories.
Section 3 describes the architecture of the speech inversion
system. Experiments were performed to evaluate the perfor-
mance of the multi-condition trained speech inversion system
under different noise types and SNRs. A speech inversion
system which was built previously [2] by training only on
clean speech was also used in these experiments for comparison
purposes. We also evaluated the efficacy of a log-Minimum
Mean Squared Error (log-MMSE) based speech enhancement
system as a preprocessor for estimating the TVs from noisy
speech. The experimental details and the results are discussed
in section 4. The conclusions are given in section 5.

2. Dataset Description
In order to make the trained neural network model robust
to noise, it is imperative that the model is trained on an
input dataset which represents noise in different situations as
well as in different intensity levels. As such a noisy speech
database was not readily available, we used the Wisconsin X-
Ray Microbeam database with noise being added artificially.
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Figure 1: Block diagram of the speech inversion system

The XRMB recordings originally comprise of naturally
spoken utterances from 32 male and 25 female subjects along
with X-ray microbeam cinematography of the mid-sagittal
plane of the vocal tract with pellets placed at points along the
vocal tract. The trajectory data are recorded for the individual
articulators: Upper Lip, Lower Lip, Tongue Tip, Tongue Blade,
Tongue Dorsum, Tongue Root, Lower Front Tooth (Mandible
Incisor), Lower Back Tooth (Mandible Molar). We call these
trajectories as pellet trajectories. A common problem with artic-
ulatory recordings of this type is the mis-tracking of pellets or
the pellets falling off while recording. Such problems were
encountered in the XRMB recordings and were marked as miss-
tracked segments. These segments were removed from the
database before using it for our analysis.

The X-Y positions of the pellets are closely tied to the
anatomy of the speakers. The quantification of the vocal tract
shape is better performed by the location and degree of these
constrictions than the X-Y positions of the pellets. Moreover,
the absolute positions of the articulators are dependent on the
anatomy of the speaker’s vocal tract. The TVs specify the
salient features of the vocal tract area function more directly
than the pellet trajectories [21] and are relatively speaker
independent. They also provide us a theoretical framework
to analyze speech production with the theoretical framework
of articulatory phonology. Hence, the pellet trajectories
were converted to TV trajectories using geometric transforma-
tions as outlined in [22]. The transformed XRMB database
consists of 21 males and 25 females, with a total of 4 hours
of speech data with corresponding 6 TV trajectories. The
TVs obtained from the seven pellet trajectories were Lip
Aperture (LA), Lip Protrusion (LP), Tongue Body Constriction
Location (TBCL), Tongue Body Constriction Degree (TBCD),
Tongue Tip Constriction Location (TTCL) and, Tongue Tip
Constriction Degree (TTCD).

The noise signals that were artificially added to the clean
speech data of the XRMB database, were obtained from the
AURORA database recordings representing different places:
babble, car, exhibition hall, restaurant, street, airport, train
station, and train. These noise signals were added to the clean
speech signals at Signal-to-Noise Ratio (SNR) levels of 0dB,
5dB, 10dB, 15dB, and 20dB. We call this noise added version
of the XRMB dataset as XRMB noisy dataset.

The resultant noise embedded speech database was then
used to train the noise-robust speech inversion system which
is described in the next section.

3. Speech Inversion System

The development of the Deep Neural Network to be trained
on the acoustic features to estimate the articulatory features
is described here. The block diagram of the speech inversion
system is shown in Figure 1. The different steps involved in the
system are elaborated in the following subsections.

3.1. Feature extraction

Mel Frequency Cepstral Coefficients (MFCCs) are used as
acoustic features for the input to the speech inversion system.
When computing MFCCs, 13 cepstral coefficients were
extracted from a 20ms Hamming analysis windows with a 10ms
frame shift. The MFCCs and TVs were mean and variance
normalized to have zero mean and unit variance per utterance.
The mean and variance normalization were performed per
utterance instead of using global statistics because different
noise types might affect the cepstral coefficients in different
ways resulting in average statistics that don’t normalize the
differences across noise types. The MFCCs were contextu-
alized by concatenating every other feature frame in a 340ms
window. This resulted in 8 frames of MFCCs on either side
of each frame being concatenated to form the contextualized
MFCC features (total of 17 frames including the current frame).
By skipping two frames when splicing the frames, the current
analysis frame is centered when concatenating every other
frame. Previous studies [23] have explored different lengths of
feature contextualization and found a splice width of 17 frames
to be optimal.

3.2. DNN training

The input layer (which accepts contextualized MFCCs) of the
feed-forward DNN has 221 nodes (13 MFCCs x 17 frames) and
the output layer (which generates estimated TVs) has a dimen-
sionality of 6 nodes. The input dataset was divided into training,
development, and testing sets so that the training set has utter-
ances from 36 speakers and the development and testing sets
have 5 speakers each (3 males,2 females). Around 80% of the
total number of utterances were present in the training set. The
development and testing sets have a nearly equal number of
utterances. This allocation was done in a completely random
manner.

Similar to prior experiments [2], the trained DNNs had
1024 neurons in all the hidden layers. DNNs with 3, 4 and 5
hidden layers were trained and the model performing better on
the cross-validation set was chosen as the optimal model.

The DNN was trained on mini batches as the total amount
of input MFCC features were quite high to be trained as a
whole batch. The training was performed to minimize the
mean squared error between the actual TVs and the estimated
TVs. The Adam optimizer was used for optimizing the network
parameters. Speaker specific normalization was performed on
the TVs when they are being generated.

3.3. Kalman smoothing

The estimated TVs from the DNN are often noisy. Articulatory
trajectories (such as TVs) are low-pass in nature due to the
kinematic constraints of human speech production system. The
noise in the TV estimates were reduced by low-pass filtering the
estimated TVs using a Kalman filter. In our work, we did not
estimate the Kalman smoothing parameters, instead we fixed
the parameters of the Kalman smoother to operate as a low-pass
filter. The output of this is taken as the estimated TV output.

3.4. Performance measurement

Once the best performing DNN is obtained, the test data set was
used to measure the performance of the model. The Pearson
Product Moment Correlation (PPMC) between the estimated
TV and the corresponding ground-truth TV was computed as
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the performance evaluation metric.

PPMC =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

4. Experiments and Results
First, to identify the best performing DNN architecture, we
trained the model having 3, 4, and 5 hidden layers keeping 1024
neurons in each hidden layer. The average correlations between
actual and estimated TVs across all TVs on the cross validation
set were 0.702, 0.707, and 0.710 respectively for 3, 4, and 5
layers. Since the 5 layer model generated the highest corre-
lation, the rest of the experiments were conducted using the 5-
layer DNN model. Adding further layers to the network led to
non-convergence of the training. Hence we stopped at 5 hidden
layers.

Next, several experiments were conducted to evaluate the
performance of the multi-condition trained speech inversion
system and also to compare the improvement of the results,
keeping the speech inversion system trained only on the clean
speech data as the baseline.

4.1. Performance of multi-condition trained speech
inversion system across noise conditions

The multi-condition trained speech inversion system was
evaluated on the test set of the XRMB noisy dataset. The test
was performed on all noise types and SNRs on the test set.
Correlations between actual and estimated TVs were computed.
Table 1 shows the correlations for each TV averaged over all
SNR levels and noise types. The average correlation on the
XRMB noisy test set was 0.70949. Note that none of the
speakers from the test set were included in the training set.

Figure 2 depicts the increase of average correlation as
the SNR level is increases. Average Correlation for the TVs
estimated on clean version of the test set using the noise robust
speech inversion system is also included in the graph which is
0.741. These correlation values are averaged over all 6 TVs.

Figure 2: Average correlations on the XRMB noisy test set for
different SNR levels.

Figure 3 indicates the variation of the average correlation
depending on the noise type. It can be observed that when
the noise is more non-stationary, (Eg: Subway, Exhibition,
and, Restaurant), the correlations are lower compared to the
relatively more stationary noise types like car, train and airport.
As expected, the correlation on the clean speech subset (red bar
in Figure 3) outperforms the noisy test subsets.

Figure 3: Average correlations on the XRMB noisy test set for
different noise types

4.2. Performance of clean trained inversion system on noisy
test set

The clean speech trained inversion system, was evaluated on
the XRMB noisy test set. The results are shown in Table 1. The
average correlation is 0.640. Thus, the multi-condition trained
system in section 4.1 shows a relative improvement of 10.83%
in correlation for the TV estimation of noisy speech using this
noise robust inversion system.

4.3. Effect of speech enhancement

We used an implementation of the minimum mean-square error
log-spectral amplitude estimator in [24] to enhance the noisy
speech signals before extracting the MFCCs (by lowering the
residual noise level). The effect of this pre-processing technique
is investigated on the clean speech trained inversion system,
and the results are compared with those of sections 4.1 and 4.2.
The computed correlations are given in Table 1 and the average
correlation in this case was only 0.597. This could be due to the
distortions in the speech introduced by the speech enhancement
algorithm.

Table 1: Average correlations of TVs estimated by multi-
condition trained speech inversion (SI) system and clean trained
SI system on different test conditions

Model Test Set LA LP TBCL TBCD TTCL TTCD Average
Multi-condition SI Noisy 0.793 0.530 0.818 0.626 0.635 0.855 0.710
Clean Speech SI Noisy 0.710 0.476 0.757 0.546 0.571 0.782 0.640
Clean Speech SI Enhanced 0.668 0.430 0.725 0.497 0.525 0.740 0.597

Multi-condition SI Clean 0.828 0.554 0.845 0.680 0.654 0.885 0.741
Clean Speech SI Clean 0.856 0.613 0.866 0.745 0.707 0.907 0.782

4.4. Performance on clean speech data

Finally, we compared the correlations of the estimated TVs of
clean speech data obtained from the multi-condition trained
inversion system along with those generated by the speech
inversion system trained only on clean speech. The last two
rows of Table 1 summarizes the results in this section. The TVs
estimated from the clean trained system had an average corre-
lation of 0.782 while those estimated by the multi-condition
trained system had an average correlation of 0.741. Thus the
multi-condition training results in a relative degradation in the
performance on clean speech by 5.2%

Figures 4 and 5 show the estimated Tract Variables, LA,
TBCD, and TTCD for an example utterance estimated by the
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Figure 4: TV plots for the utterance ”Put this one right here”
for exhibition noise - estimated using multi-condition trained
speech inversion system. Solid blue Line - actual TV, red dotted
line - estimated TV from clean signal, black dashed Line -
estimated TV from noisy signal (0dB), green dash-dot line -
estimated TV from noisy signal (10dB)

multi-condition trained speech inversion system and the clean
speech trained system respectively. We chose to display these
TVs for the clean speech signal and for signals with noise added
at 0dB SNR and 10 dB SNR, along with the actual TV for
the noise type Exhibition. It can be seen that the estimated
TVs for LA and TTCD align with the corresponding ground-
truth TVs well, compared to TVs for TBCD. As the chosen
utterance doesnt contain velar consonants where TBCD would
be a critical constriction, there is more variability in TBCD
(i.e., different people will choose to different things with the
tongue body given it is not needed to produce any of the conso-
nants). When the TTCD TV estimations for the two cases
are considered, it can be seen that the multi-condition trained
systems TV at 0 dB aligns more with the actual TV compared to
the same TV of the clean speech trained system. This is clearly
seen in the time region from 0.7 to 0.9 where there is a tongue
tip constriction for the /n/ and the following /r/ in “one right”.

5. Conclusion
This paper presented the development of a noise robust acoustic
to articulatory speech inversion system using a multi-condition-
trained DNN. Experiments were performed on the noise added
XRMB dataset. A DNN based speech inversion system was
trained with contextualized MFCCs as the input and 6 TVs as
the output. Results show that the correlation of TVs estimated
by the multi-condition-trained system improves by 10.83%
compared to the TVs estimated by the clean speech trained
system. We performed speech enhancement preprocessing
on the noisy speech data to determine whether the speech
enhancement nullifies the gains obtained by multi-condition
training. Testing the clean trained system on speech enhanced
XRMB noisy test set revealed that the speech enhancement did

Figure 5: TV plots for the utterance ”Put this one right here” for
exhibition noise - estimated using clean speech trained speech
inversion system. Solid blue line - actual TV, red dotted line -
estimated TV from clean signal, black dashed line - estimated
TV from noisy signal (0dB), green dash-dot line - estimated TV
from noisy signal (10dB)

not provide any improvement in the correlation compared to not
performing any speech enhancement. This was a perplexing
result as it showed that the clean speech trained system works
better on noisy speech compared to enhanced speech. This
result is probably due to speech distortions introduced by the
speech enhancement. In the future we plan to see if less
aggressive speech enhancement yields better results, perform
a cross corpus test of the noise robust speech inversion system
and apply the noise robust speech inversion system for robust
ASR.
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