
Multi-task WaveNet: A Multi-task Generative Model for Statistical
Parametric Speech Synthesis without Fundamental Frequency Conditions

Yu Gu, Yongguo Kang

Baidu Speech Department
Baidu Technology Park, Beijing, 100193, China
guyu04@baidu.com, kangyongguo@baidu.com

Abstract

This paper introduces an improved generative model for statis-
tical parametric speech synthesis (SPSS) based on WaveNet un-
der a multi-task learning framework. Different from the origi-
nal WaveNet model, the proposed Multi-task WaveNet employs
the frame-level acoustic feature prediction as the secondary
task and the external fundamental frequency prediction model
for the original WaveNet can be removed. Therefore the im-
proved WaveNet can generate high-quality speech waveforms
only conditioned on linguistic features. Multi-task WaveNet can
produce more natural and expressive speech by addressing the
pitch prediction error accumulation issue and possesses more
succinct inference procedures than the original WaveNet. Ex-
perimental results prove that the SPSS method proposed in this
paper can achieve better performance than the state-of-the-art
approach utilizing the original WaveNet in both objective and
subjective preference tests.
Index Terms: WaveNet, multi-task learning, statistical para-
metric speech synthesis

1. Introduction
Text-to-speech (TTS) synthesis involves generating intelligi-
ble and natural sounding synthetic speech waveforms given
the input text messages. At present, TTS synthesis tech-
nique is an indispensable basic component in various appli-
cations with speech interface such as car navigation systems,
speech-to-speech translation, voice assistant and screen read-
ers, etc. Thus the demands and expectations for high-quality,
high-naturalness, more stable and expressive speech waveform
synthesis algorithms will be increasing more and more in future.

Statistical parametric speech synthesis (SPSS) [1] is one of
the mainstream speech synthesis techniques in which statisti-
cal models are employed to model the complex mapping rela-
tionship between the input linguistic information and the cor-
responding acoustic features. Decision-tree-clustered context-
dependent hidden Markov model (HMM) speech synthesis [2]
with single Gaussian state-output distribution has dominated
SPSS in the past decade. In recent years, deep learning technol-
ogy has been intensively studied and adopted in many speech
generation tasks [3]. Different kinds of stochastic neural net-
works with various deep structures have also been utilized as
the acoustic models to replace the decision trees and the prob-
ability density functions over acoustic features in conventional
HMM-based SPSS methods. These models can model the rela-
tionship between input features and acoustic features more ac-
curately than conventional HMMs and Gaussian mixture mod-
els and they can be used to model high-dimensional spectra di-
rectly. Unidirectional or bidirectional recurrent neural networks
(RNNs) incorporating long short-term memory (LSTM) cells of

inherently strong ability in capturing long range temporal de-
pendencies were also exploited on speech synthesis systems to
produce higher quality and smoother speech trajectories than
conventional deep neural networks [4, 5] .

Comparing with unit-selection speech synthesis, SPSS is
more flexible and has the advantages on TTS tasks for a small-
scale and mildly-curated speech corpus and speech synthesis on
mobile devices. The synthesized speech by SPSS is much more
stable and can effectively alleviate the discontinuity which is a
representative drawback of speech synthesis based on unit se-
lection and waveform concatenation. Nevertheless, due to the
limits of some factors such as vocoder quality, modeling ac-
curacy and over-smoothing effect, the quality and similarity of
generated speech from SPSS are still far from those of natu-
ral speech. WaveNet [6] proposed recently by DeepMind is
one of the state-of-the-art generative models in speech gen-
eration area. WaveNet and its variants with similar dilated
convolutional network structures have achieved huge success
on multiple audio generation tasks besides speech synthesis
such as speech enhancement [7], voice conversion [8], singing
synthesis [9, 10], speech bandwidth extension [11] and neural
vocoders [12, 13, 14]. Distinguished from conventional frame-
based SPSS approaches, WaveNet can model the speech wave-
forms directly using dilated causal convolutional neural net-
works (CNNs) instead of vocoders. It has been proved that
WaveNet was capable of producing significantly more natural
sounds than conventional SPSS approaches [6, 15], therefore
WaveNet is an effective and promising solution to fill the gap of
quality between natural and synthesized speech in SPSS.

Original WaveNets for the SPSS task were locally condi-
tioned on the logarithmic fundamental frequency (log F0) val-
ues in addition to the linguistic features. The pitch or funda-
mental frequency information of speech is crucial for wave-
form generation because it represents the periodicity of speech
waveforms. The absence of the log F0 condition information
could degrade the naturalness of generated speech and lead
in severe intonation mistakes [6], therefore a different auxil-
iary model for predicting log F0 contours from linguistic fea-
tures was quite essential for waveform generation in WaveNet.
However the involvement of an external F0 prediction model
made the WaveNet inference procedures much more compli-
cated. The error of the pitch determinations and the mistakes
for voiced/unvoiced decisions in the F0 prediction model could
also bring in inaccurate or wrong input condition information
for WaveNet, which directly alleviated the naturalness and qual-
ity of the synthesized speech, even though WaveNet model it-
self was accurate. In this paper, an improved WaveNet for SPSS
under the multi-task learning framework is proposed to address
these issues. The proposed Multi-task WaveNet can get rid of
the redundant F0 prediction model by deploying the F0 predic-
tion as a secondary task. Both objective and subjective tests
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Figure 1: Dilated causal convolutional network structures in
WaveNet.

show that the proposed Multi-task WaveNet can outperform the
original WaveNet and can obtain smaller objective distortion
and better subjective preference results.

This paper is organized as follows. Section 2 gives a brief
review of the model structure of WaveNet. Section 3 introduces
the proposed Multi-task WaveNet in this paper and the con-
structed SPSS system in detail. The experimental conditions
and results are described in Section 4 and finally Section 5 con-
cludes this paper.

2. WaveNet
WaveNet [6] is a generative model which was proposed for TTS
synthesis and other general audio generation tasks. WaveNet
performed autoregressive speech sample generation using an
acoustic model with stacked dilated causal convolutional lay-
ers instead of depending on vocoders. The architectures of ex-
ploited dilated CNNs are illustrated on Figure 1. The causal
convolutional layers have various dilation factors that allow
their receptive field to grow exponentially in terms of the depths
of networks as opposed to linearly, and can therefore cover the
input history information from thousands of timesteps ahead.
The dilated causal CNN can be regarded as a statistical model
and the conditional distribution of the output sample sequence
x = {x1, x2, · · ·, xT } given the input local condition sequence
c is factorised as the product of conditional probabilities as fol-
lows:

p (x | c) =
T∏

i=1

p (xi | xi−N+1, xi−N+2, · · ·, xi−1, c) , (1)

where N is the length of the receptive field.
Residual learning strategies [16] were also applied on the

dilated CNNs in WaveNet to address the issues of training ac-
curacy degradation and slow convergence. Each convolutional
layer in WaveNet is wrapped in a residual block which contains
gated activation units and two additional convolutional layers
towards the following and output layers respectively with con-
volution filters of size 1. The residual and parameterized skip-
connections are deployed throughout the network to capacitate
training deeper networks and to accelerate convergence. The
gated activation units with condition sequence c in k-th layer
are expressed as:

ĥk =tanh(Wf,k ∗ hk + Vf,k ∗ c) �
σ(Wg,k ∗ hk + Vg,k ∗ c), (2)

where f and g denote the filter and gate parts respectively, σ is
the sigmoid non-linearity function, � is the element-wise prod-
uct and ∗ is the convolution operator. The output layer is cas-
caded with a softmax layer and thus the model can describe the
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Figure 2: Network structures of Multi-task WaveNet.

categorical distribution of waveform sample values encoded by
μ-law algorithm [17].

3. Multi-task WaveNet
3.1. Multi-task learning

Multi-task learning (MTL) [18] is a very useful machine learn-
ing strategy which aims at improving model generalization abil-
ity and performance by jointly learning several different but re-
lated tasks. The main task usually shares a part of the represen-
tation with other secondary tasks and the secondary tasks can
contribute to the model training of the corresponding main task
by supplementing information, transferring knowledge and in-
creasing the amount of training data. MTL approaches can be
easily deployed on stochastic neural networks by sharing cer-
tain hidden layers cross different tasks. MTL has obtained great
achievements on multiple speech signal processing areas such
as speech synthesis [19] and automatic speech recognition [20].

In this paper, the MTL strategy is also employed on
WaveNet to assist the network training. For the SPSS method
based on the original WaveNet, the core task is to generate
the speech samples in an autoregressive manner given the in-
put linguistic features and log F0 values, meanwhile the task
of the conventional frame-based SPSS approach is to predict
the frame-level acoustic features extracted by vocoders from
the input linguistic features. These two different tasks share
a part of the same inputs and the outputs of the two tasks are
highly correlated, therefore the task of acoustic feature predic-
tion can be treated as the secondary task for WaveNet. As ex-
hibited in Figure 2, the secondary task shares the same con-
ditional network with WaveNet. The output acoustic features
of the secondary task consist of spectral features and funda-
mental frequency information, thus the conditional network of
the trained Multi-task WaveNet possesses the representation ca-
pacity of fundamental frequencies corresponding with the tar-
get speech waveforms. Due to the pitch information comple-
ment from the secondary task, the linguistic features can be di-
rectly utilized as the condition information instead of concate-
nating with log F0 values in Multi-task WaveNet. The pro-
posed Multi-task WaveNet owns several advantages over the
original WaveNet. Firstly, the F0 prediction model is no longer
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needed, which will greatly simplify the inference procedures
of WaveNet-based SPSS. Secondly, the inconsistency of using
natural F0s for training and using predicted F0s for testing in
the original WaveNet doesn’t exist in the proposed model and
the error accumulation problem from the F0 prediction model
is also tackled. Finally, the secondary task is also conducive to
accelerating the convergence of WaveNet training.

3.2. Quasi-recurrent network condition

Similar with the network architectures in Deep Voice [15],
quasi-recurrent neural networks (QRNNs) [21] with a stack of
bidirectional RNN layers are employed in Multi-task WaveNet
as the conditional networks to encode the linguistic input infor-
mation. A unidirectional QRNN layer with fo-pooling [21] is
defined by the following equations:

ĥ = tanh(Wh ∗ x+Bh), (3)
o = σ(Wo ∗ x+Bo), (4)
f = σ(Wf ∗ x+Bf ), (5)

ht = ft · ht−1 + (1− ft) · ĥt, (6)
zt = ot · ht, (7)

where ∗ denotes the convolution operator. Bidirectional QRNN
layer is computed by running two unidirectional QRNNs, one
on the input sequence and one on a reverse of the input se-
quence. Following the bidirectional QRNN layers, the encoded
information is upsampled to the same time resolution with na-
tive audio frequency by repetition. QRNNs allow for paral-
lel computation across the timestep dimension and have faster
training and testing speeds than conventional RNNs.

3.3. SPSS using Multi-task WaveNet

At the training stage of the SPSS method based on Multi-
task WaveNet, a conventional decision tree-clustered context-
dependent HMM-based SPSS model is trained to acquire the
alignment information of the corpus. And then a duration model
based on a bidirectional RNN with stacked LSTM layers is
trained using the obtained alignment information. The input
linguistic features for WaveNet include some one-hot features
for categorical linguistic contexts (e.g. phonemes identities,
stress marks) and some numerical features for numerical lin-
guistic contexts (e.g. the number of syllables in a word, the po-
sition of the current frame in the current phoneme). The output
acoustic features for the secondary task including mel-cepstral
coefficients (MCCs) and F0 values are extracted from natural
speech by vocoders. Similar with the original WaveNet, all the
input and output waveforms are quantized to 256 discrete val-
ues using μ-law and one-hot coding is pursued on the quantized
waveforms as the input waveform sequence. For the main task,
the network training is based on cross-entropy criterion to it-
eratively improve the classification accuracy of output samples
with the target output sample sequences in training set. For the
secondary task, minimum mean squared error criterion is ap-
plied to estimate the MCCs, log F0 and voice/unvoice flag.

At the stage of inference, the phone-level linguistic features
generated by front-end text analysis are delivered to the duration
prediction neural network to produce the duration information.
Then combining with the duration information, WaveNet model
can perform autoregressive speech sample generation condi-
tioned on the frame-level linguistic features and the secondary
task part as shown by the grey dashed line in Figure 2 is aban-
doned at the speech synthesis phase.

Table 1: Comparison of distortion between acoustic features of
natural speech and synthesized speech from different systems.
V/UV means frame-level voiced/unvoiced error. BAP and Corr.
represents the BAP prediction error and correlation coefficients
respectively.

(a) Results for Corpus A

System
MCD BAP F0 RMSE F0 V/UV
(dB) (dB) (Hz) Corr. (%)

LSTM 2.265 2.131 30.485 0.860 5.264
WaveNet-lin 1.524 2.798 39.413 0.756 4.745

WaveNet 1.548 2.787 32.206 0.845 4.796
MTL-WaveNet 1.519 2.712 22.396 0.922 4.298

(b) Results for Corpus B

System
MCD BAP F0 RMSE F0 V/UV
(dB) (dB) (Hz) Corr. (%)

LSTM 1.641 2.053 37.021 0.787 4.328
WaveNet-lin 1.515 2.683 41.745 0.756 3.588

WaveNet 1.500 2.681 37.790 0.775 3.592
MTL-WaveNet 1.481 2.653 33.801 0.821 3.682

4. Experiments
4.1. Experimental conditions

To evaluate the performance of the proposed Multi-task
WaveNet, two different scales of speech database pronounced
by two Chinese female speakers respectively were used in the
experiments. The large-scale corpus contained 16.2 hours of
speech data, which was sufficient for unit-selection synthesis
and was named as “ Corpus A ”. The small-scale corpus named
as “Corpus B” only included 2.1 hours of speech data whose
corresponding transcripts were mainly designed for car navi-
gation. The sampling rate of the speech data was 16 kHz and
50 test sentences those were not present or similar to those in
the training set were used as the test set to measure the per-
formance of different speech synthesis systems for evaluation.
For the main task, the WaveNet model consisted of 40 layers,
which were grouped into 4 dilated residual block stacks of 10
layers. In every stack, the dilation rate exponentially increased
by a factor of 2 in every layers which started with rate 1 and
ended with the maximum dilation of 512. For the secondary
task, 25-dimensional MCCs were extracted from the smoothed
spectral envelopes obtained by STRAIGHT analysis [22] and
the F0 values were extracted by RAPT algorithm [23].

The following five speech synthesis systems were estab-
lished for comparison.

• LSTM: The SPSS system using bidirectional RNNs with
stacked LSTM layers as duration and acoustic models;

• Concatenative: The HMM-driven unit selection con-
catenative speech synthesis;

• WaveNet: The original WaveNet SPSS system with F0s
and linguistic features as WaveNet conditions;

• WaveNet-lin: The original WaveNet SPSS system only
conditioned on linguistic features;

• MTL-WaveNet: The proposed SPSS system using
Multi-task WaveNet.
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4.2. Objective evaluation

Objective tests were conducted to evaluate different synthesis
systems. Because the duration of synthetic speech in the Con-
catenative system was intractable to adjust, the Concatenative
system was excluded from the objective evaluations and the
other SPSS systems remained the same ground-truth duration
as the target natural speech for the convenience of comparison.
Mel-cepstral distortion (MCD), distortion of band aperiodicities
(BAP), voiced/uvoiced prediction error, root-mean-square error
(RMSE) and correlation coefficients of F0 values on a linear
scale between natural speech and synthesized speech by differ-
ent SPSS systems are presented in Table 1. It is worth men-
tioning that for the WaveNet, WaveNet-lin and MTL-WaveNet
systems, the compared acoustic features were re-extracted from
the generated waveforms, while those were directly the model
outputs for the LSTM system.

The objective results for both two speech databases show
that the synthesized speech from the MTL-WaveNet system can
acquire more accurate F0 values and smaller spectral distortion.
The F0 RMSE of the WaveNet-lin system is the largest among
all the systems, which indicates the log F0 conditional informa-
tion is quite essential for the original WaveNet. The F0 predic-
tion error of the WaveNet system is also larger than the con-
ventional LSTM system which means the inaccuracy of the F0
prediction model can be accumulated into the waveform genera-
tion step of WaveNet and further impact the synthesized speech
quality in the WaveNet system.

4.3. Subjective evaluation

Several preference tests were performed to assess the subjec-
tive perceptual quality of the speech generated from different
speech synthesis systems. In each preference test, 20 test utter-
ances randomly selected from the test set were synthesized by
two different systems and evaluated in random order by five lis-
teners. Because the speech quality of the LSTM system was far
from other systems, we only compared the preference perfor-
mances among the Concatenative, WaveNet-lin, WaveNet and
MTL-WaveNet systems. The listeners were asked to choose
their preference for each pairwise utterances in terms of speech
quality.1 The preference scores of listening tests conducted in
two databases of different scales are exhibited in Figure 3 re-
spectively with the p-values from t-test. The comparisons of
the conventional Concatenative system and the WaveNet sys-
tems demonstrate the WaveNet based method using waveform
modeling and causal dilated CNNs can successfully improve
the quality of synthesized speech. Although the candidate and
selected units for the Concatenative system are natural speech
segments in the corpus, the discontinuity of the synthesized
speech in unit-selection synthesis seriously degrades the per-
ceptual quality and naturalness. The gap between the Concate-
native and WaveNet systems for Corpus B is much larger than
that for Corpus A, which is because the data volume of Corpus
B is not sufficient for building a unit-selection synthesis system
and there are more bad cases than Corpus A. The data size can
also affect the synthesized speech quality for the approaches
based on WaveNets, while the differences are not as obvious as
those for unit-selection synthesis. The comparisons between the
WaveNet-lin and WaveNet systems can also prove the impor-
tance of using log F0 as a part of condition information in origi-
nal WaveNet SPSS methods. We find that WaveNet only condi-

1Examples of synthesized speech by different systems are available
at https://ttsdemos.github.io.
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(a) Results for Corpus A. The p-values of t-test in these comparisons
are 5.6× 10−9, 8.8× 10−7 and 0.69 respectively.
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(b) Results for Corpus B. The p-values of t-test in these comparisons
are 9.5× 10−19, 5.6× 10−9 and 0.43 respectively.
Figure 3: Preference test scores among different TTS systems.

tioned on linguistic features can synthesize natural waveforms
for the most part of one utterance but sometimes it has unnatural
phones and syllables by pronouncing wrong and strange tones.
The superiority of the MTL-WaveNet system over the WaveNet
system on preference scores indicates the effectiveness of uti-
lizing the acoustic feature prediction as the secondary task. The
improvement of preference scores for the MTL-WaveNet is less
significant than those of objective tests. In fact, the generated
speech from the WaveNet system is generally good enough and
the advantages of the proposed Multi-task WaveNet are embod-
ied on some certain speech segments and some speech details
which are easily ignored by listeners.

5. Conclusions
In this paper, we propose an improved WaveNet model for
SPSS exploring the multi-task learning strategy. The frame-
level acoustic feature prediction is introduced as the auxiliary
secondary task to supplement the requisite pitch information.
Comparing with the original WaveNet based SPSS approach,
the proposed Multi-task WaveNet can get rid of the redun-
dant F0 prediction model and increase the inference efficiency.
This model can also solve the pitch prediction error accumula-
tion problems. Both objective and subjective evaluation results
show that the SPSS method proposed in this paper have the ad-
vantages over the original WaveNet. To achieve more natural
prosody and more expressive speech, some end-to-end speech
synthesis models will be tried to further replace the duration
models for WaveNets in our future work. We will deploy such
multi-task learning structure on Parallel WaveNet to further ac-
celerate the inference speed and apply the proposed algorithms
on online products.
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