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Abstract

Developing a voice conversion (VC) system for a particu-
lar speaker typically requires considerable data from both the
source and target speakers. This paper aims to effectuate VC
across arbitrary speakers, which we call any-to-any VC, with
only a single target-speaker utterance. Two systems are studied:
(1) the i-vector-based VC (IVC) system and (2) the speaker-
encoder-based VC (SEVC) system. Phonetic PosteriorGrams
are adopted as speaker-independent linguistic features extracted
from speech samples. Both systems train a multi-speaker deep
bidirectional long-short term memory (DBLSTM) VC model,
taking in additional inputs that encode speaker identities, in or-
der to generate the outputs. In the IVC system, the speaker
identity of a new target speaker is represented by i-vectors. In
the SEVC system, the speaker identity is represented by speaker
embedding predicted from a separately trained model. Experi-
ments verify the effectiveness of both systems in achieving VC
based only on a single target-speaker utterance. Furthermore,
the IVC approach is superior to SEVC, in terms of the quality
of the converted speech and its similarity to the utterance pro-
duced by the genuine target speaker.

Index Terms: voice conversion, i-vector, speaker encoder, low-
resource deployment

1. Introduction

The goal of voice conversion (VC) is to modify a speech sig-
nal uttered by a source speaker to sound as if it was uttered by
a target speaker, without changing the linguistic content. Var-
ious methods have been proposed for VC. Gaussian Mixture
Models (GMMs) have been used for VC to develop weighted
linear conversion functions mapping the source-target feature
vectors [1, 2]. Other methods, including kernel partial least
squares regression [3], frequency warping [4, 5] and neural net-
works [6, 7, 8, 9, 10, 11] have also been studied. Developing a
VC system for a particular speaker typically requires consider-
able parallel data between the source and target speakers. Many
techniques have been studied to perform VC when only non-
parallel data is available. In [12, 13], the INCA-based algo-
rithms were proposed to iteratively seek frame-wise alignment
between non-parallel source and target utterances, where the
VC performance may degrade due to the inaccurate alignment.
Another approach is to train VC models with available speech
data from other speakers and then adapt to the desired target
speaker. In [14, 15], a maximum a posterior (MAP) method was
used to adapt a source GMM with target data, while in [16], the
eigenvoice approach was introduced into VC. These methods
still require parallel data from other speakers. Recently, adap-
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tive restricted boltzmann machine [17], variational autoencoder
[18], and phonetic posteriorgram (PPG)-based methods [19, 20]
have been proposed to achieve parallel free VC.

Furthermore, VC systems are often deployed for a specific
target speaker. When a new target speaker comes along, a VC
model needs to be either adapted from a pre-trained model or
built entirely from scratch with speech data from the new tar-
get speaker. Adaptation and new model development is hard
to achieve when only limited speech data (e.g., one utterance)
is available from that target speaker. One way to tackle this
low-resource deployment problem is to train a multi-speaker
VC (MSVC) model with available multi-speaker speech cor-
pus, where speaker identities (speakerIDs) are encoded as ad-
ditional model inputs. For a new source-target speaker pair,
the trained MSVC model takes in linguistic features extracted
from the source utterance and additional input encoding the
target speakerID to get the target spectral features. Different
ways to encode speakerIDs have been studied. In [21], i-vectors
are employed, which are low-dimensional speaker specific vec-
tors, as additional inputs to encode speakerIDs when training an
average voice model (AVM) with a multi-speaker speech cor-
pus. In text-to-speech synthesis, learnable speaker embeddings
have been adopted as additional inputs to encode speakerIDs
[22,23].

This paper focuses on performing VC across arbitrary
speakers, which we call any-to-any VC, using only a single tar-
get speaker’s utterance. We adopt the PPG-based VC method
[19], where PPGs are speaker-independent linguistic features
and can be extracted from the same utterance with the spectral
features. Hence, we can train the model using completely non-
parallel data. We train deep bidirectional long-short term mem-
ory (DBLSTM)-based MSVC models, which take in additional
inputs encoding speakerIDs, with a multi-speaker speech cor-
pus. We compare the use of i-vectors and learnable speaker em-
beddings to encode speakerIDs. While i-vectors for a new target
speaker are extracted from a pre-trained offline i-vector extrac-
tor from the target speaker’s utterances, the embedding of that
speaker cannot be obtained directly from the learned speaker
embedding table. Inspired by [24], we train a separate model,
called speaker encoder, with learned speaker embeddings and
then estimate the speaker embedding of a new target speaker
using her/his utterances. The any-to-any VC systems explored
in this paper have several advatages:

* They can achieve VC across a new source-target speaker
pair using only one target-speaker utterance. The con-
verted speech has acceptable quality and similarity com-
pared with the ground-truth target utterances.

e They have no adaptation procedure, meaning that the
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Figure 1: Schematic diagram of an any-to-any voice conversion
system.

trained systems can be used for new source-target speak-
ers directly.

¢ They have no requirement for parallel data during train-
ing, meaning that any available speech corpus can be
used for model training.

The rest of the paper is organized as follows: Section 2
introduces the any-to-any VC systems. Section 3 describes the
experimental setup. Section 4 presents the evaluation results
and Section 5 concludes this paper.

2. Any-to-Any Voice Conversion Systems

We propose two different systems to achieve any-to-any VC:
(1) The i-vector-based VC (IVC) system and (2) the speaker-
encoder-based VC (SEVC) system. Both systems train a
DBLSTM-based MSVC model. The IVC system uses i-vectors
to encode speakerIDs, while the SEVC system uses learnable
speaker embeddings to encode speakerIDs.

2.1. The I-vector-based VC System
2.1.1. The I-vector Extractor

The i-vector, a low-dimensional vector, has proven to be the
most successful speaker representation for speaker recognition.
In this work, we employ the classical GMM i-vector approach
[25] as i-vector extractor. It compresses both channel and
speaker information into a low-dimensional space called total
variability space, and accordingly projects each GMM super-
vector to a total factor feature vector called the i-vector. Given
features of N utterances and [V, frames for the u-th utterance,
{:1:2(-”)}{1:1 ,,,,, Nuju=1,...,N}» F' is the dimension of each frame,

the i-th speech frame xgu) from the the wu-th utterance is as-
sumed to be generated by the following Gaussian distribution:

ch(.“) ~ Z 7r,(cu)./\/’(m,rC + Trw'™, 1)
k

ey

where my, and X, is the mean and covariance of the k-th Gaus-
sian in the universal background model (UBM), the T} matri-
ces describe a low-rank space (named total variability space)
and w'? is a low-dimensional total variability factor (named
i-vector) with standard normal distribution. There are K Gaus-
sian components in the UBM which is used as the class k in
Eq. 1.

497

STFTMs

O

Bi-LSTM Block

Pt 1

—)@—»soﬁsign—)
—)@—»softsig n—»

x N2 layers

tanh

¢

dropout
A

1 T 1
»@*soﬂsign—i concat bl concat

SpeakerID encoding PPGs concatenate with LFO

Figure 2: Schematic diagram of the multi-speaker voice conver-
sion (MSVC) model in Figure 1.
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Since the i-vector contains both speaker and channel infor-
mation, Linear Discriminant Analysis and Probabilistic LDA
(PLDA) [26], good inter-session compensation methods, are ap-
plied to the i-vectors for dimension reduction.

2.1.2. Training and Conversion

The IVC system consists of two parts: MSVC model training
part and conversion part.

Figure 1(a) shows the MSVC training process. The i-vector
extractor introduced in Section 2.1.1 is used as the speakerID
encoding extractor. The speaker-independent automatic speech
recognition (SI-ASR) model has a DNN architecture, which is
pre-trained by a standard ASR corpus. The MSVC model ar-
chitecture is shown in Figure 2, which comprises of two parts:
N; stacked fully connected (FC) layers and N> stacked bidirec-
tional long-short term memory (Bi-LSTM) [27] layers. To fully
condition on the speakerIDs, we incorporate the speakerIDs into
multiple portions of the MSVC model. We map the speakerID
encodings to higher-level representation with one FC layer be-
fore concatenating with PPGs and log-scale FO (LF0). We pro-
duce the initial states of the stacked Bi-LSTM layers by distinct
FC layers. Given speech samples from the multi-speaker train-
ing corpus, their Mel-frequency cepstral coefficients (MFCCs),
LFO and short-time Fourier transform magnitudes (STFTMs)
are first extracted. The MFCCs are then fed into the pre-trained
i-vector extractor and SI-ASR model to obtain the i-vectors and
PPGs, respectively. We use the i-vectors obtained as speakerID
encodings. Since PPGs are speaker-independent linguistic fea-
tures which are free from prosodic information, we add LFO to
the input side of the MSVC model to compensate. Therefore,
the speakerID encodings, PPGs and LFO are fed into the MSVC
model to drive out the STFTMs outputs, which are used to to
compute a regression loss with the ground truth STFTMs. Then
the model parameters are updated using the back-propagation
through time (BPTT) algorithm.

The conversion process is shown in Figure 1(b). Given a
pair of new source and target speakers, the source speech sam-
ples are used to extract MFCCs and LFO, while the target speech
samples are used to obtain only MFCCs. The source MFCCs
are then fed into the SI-ASR model to get PPGs, while the tar-
get MFCCs are applied to compute i-vector from the speakerID
encoding extractor. Then the MSVC model is driven by the
obtained PPGs, LFO and the target speaker i-vector to get the
predicted STFTMs. Finally, the converted speech is computed
using the Griffin-Lim algorithm[28].
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2.2. The Speaker-Encoder-based VC System
2.2.1. Speaker Encoder

The speaker encoder is a regression model which is used to pre-
dict embedding of a speaker unseen during the training stage.
We use a similar speaker encoder architecture to that proposed
in [24]. As shown in Figure 3, the speaker encoder consists
with four parts: Ny stacked FC layers, N stacked convolu-
tional layers with Gated Linear Units (GatedCNN) [29], one
global mean pooling layer and one multi-head attention layer
[30]. The speaker encoder is trained using data from only the
observed training speakers, where the Mel-spectrograms of au-
dio samples are used as inputs, while the learned speaker em-
beddings are regarded as outputs.

2.2.2. Training and Conversion

The MSVC model, shown in Figure 2, adopts speaker embed-
dings as additional inputs encoding speakerIDs. The training
process is as follows: (1) The MSVC model is first trained
with a multi-speaker speech corpus, where the embedding pa-
rameters are appropriately initialized and then jointly trained
with other model parameters by a regression loss. (2) We then
use speech samples from the training speakers as inputs and
the learned training speaker embeddings as outputs to train the
speaker encoder.

As shown in Figure 1(b), where the trained speaker en-
coder is adopted as the speakerID encoding extractor, the con-
version process is similar to that introduced in Section 2.1.2.
The only difference is that the target speakerID is represented
by an embedding estimated from the speaker encoder using
Mel-spectrograms computed from speech signals of that target
speaker.

3. Experiments

We compare the two approaches for any-to-any VC introduced
in Section 2: (1) the IVC system and (2) the SEVC system. To
explore whether more target-speaker utterances can improve the
quality of the converted speech and its similarity to the speech
uttered by the target speaker, we train three speaker encoders
for use of 1, 5 and 10 target-speaker utterance(s) respectively.
At the conversion stage, we feed 1, 5 or 10 target-speaker utter-
ance(s) into the corresponding trained speaker encoder to esti-
mate the target-speaker embedddings.
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3.1. The SI-ASR Model and the I-vector Extractor Training

The SI-ASR model has a DNN architecture with 4 hidden lay-
ers containing 1024 hidden units. Senones are treated as the
phonetic class of PPGs. The number of senone classes is 131,
which are obtained by clustering at the SI-ASR training stage.
Speech data of 462 speakers in the TIMIT corpus [31] is used
to train the SI-ASR model. 13-dimensional MFCCs extracted
using a 25-ms Hamming window with 5-ms shift are used as
features. We implemented the SI-ASR model using the Kaldi
speech recognition toolkit [32]. All speech samples used in this
paper are resampled to 16kHz.

We train the i-vector extractor using the Wall Street Journal
corpora (WSJO+WSJ1) [33] and the TIMIT corpus, which con-
tains 847 speakers in total. For the acoustic features in speaker
modeling, the first 19 MFCCs and log energy are calculated, to-
gether with their first and second derivatives. The frame length
is 25ms. Then energy-based voice-activity detection (VAD)
and sliding-window cepstral mean and variance normalization
(CMVN) are applied to remove non-speech frames and for fea-
ture normalization. The gender-independent 2,048 Gaussian
UBMs, i-vector extractor, LDA and PLDA with whitening and
length normalization are trained on all the model training data.
The dimension of i-vector is set to 400. The rank of LDA and
PLDA projection matrix is set to 200 and 32. So the final di-
mension of i-vector is 32.

3.2. MSVC Model Training

As shown in Figure 2, the IVC system and the SEVC system
have the same MSVC model configuration. We use 2 FC layers
with dropout (0.2) containing 512 hidden units. 4 Bi-LSTM
layers with 512 hidden units are deployed, the outputs of which
are then mapped to STFTMs by another FC layer. The FC layer
before the concatenation operations has 132 hidden units, while
the FC layers producing the initial states of the Bi-LSTM layers
have 512 hidden units.

The VCTK corpus [34] is used for training the MSVC mod-
els. The VCTK consists of 108 English native speakers with
various accents. There are parallel utterances between different
speakers in VCTK. To leverage the benefit that the proposed
systems have no requirement for parallel data, we only use non-
parallel utterances during training. 96 speakers (40 males and
56 females) with 90 utterances each are used as training speak-
ers and the remaining 12 speakers are used as evaluation speak-
ers. STFTMs are computed with Hanning windowing, 25-ms
window size, 5-ms window shift and 1024-point Fourier trans-
form. Waveforms are pre-emphasized (0.97) before Fourier
transform. We normalize PPGs, LFO0, i-vectors and STFTMs
to have zero mean and unit variance. We raise the predicted
STFTMs by a power of 1.35 before feeding to the Griffin-Lim
algorithm to reduce artifacts. The speaker embeddings have di-
mension of 32. We use L1 loss and Adam optimizer (51 = 0.9,
B2 = 0.999) [35] with learning rate 0.002.

3.3. Speaker Encoder

The speaker encoder has 2 FC layers with 64 hidden units, 2
layers of GatedCNN layers with 64 kernels and kernel width
12. The multi-head attention layer is applied with 2 heads and
a unit size of 64 for keys, queries and values. Log-Mel spectro-
grams with 80 frequency bands are extracted from the training
speech samples using Hanning windowing, 25-ms window size,
5-ms window shift and 1024-point Fourier transform. Log-Mel
spectrograms are normalized to zero mean and unit variance be-
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fore being fed into the speaker encoder, while the speaker em-
beddings are not normalized. 86 speakers (35 males and 51
females) from the training speakers are used to train the speaker
encoder and the remaining 10 training speakers are used as val-
idation set. Three speaker encoders are trained, which corre-
sponds to 1, 5 and 10 target-speaker utterance(s). L1 loss is
optimized by Adam optimizer (51 = 0.9, S2 = 0.999) with
minibatch size of 32 and initial learning rate of 0.001 with an-
nealing rate of 0.5 applied every 2000 update steps.

4. Experimental Results
4.1. Subjective Evaluation Setup

We chose 4 speakers (2 females and 2 males) from the remain-
ing 12 evaluation speakers, which are totally unseen during
training. 1 female and 1 male speakers from the picked are used
as target speakers, with the remaining 2 as source speakers. Ut-
terances from each source speaker with text prompts different
from the training samples are randomly chosen to perform the
evaluation.

We conducted the standard 5-scale mean opinion score
(MOS) test and 4-scale similarity test on Amazon Mechanical
Turk platform." In the MOS test, each group of stimuli contains
the ground truth speech samples from the target speakers, which
are randomly shuffled before being displayed to listeners. In the
similarity test, converted speech samples are directly compared
with the ground truth speech samples.

'Some audio samples can be found in “https://vedemo.github.io”
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4.2. Results and Analysis

The results of the MOS and similarity tests are shown in Figure
4 and Figure 5. In Figure 4, GT-F and GT-M stand for female
and male ground truth speech samples, respectively. SE-NO1
denotes the SEVC system using 1 target-speaker utterance to
estimate speaker embedding, while ivec-NO1 denotes the IVC
system using 1 target-speaker utterance to extract i-vector and
so on. The key observations from the results are as follows:

* Both the proposed IVC and SEVC systems can achieve
VC across a new source-target speaker pair using only
one target-speaker utterance. The converted speech has
desirable quality and similarity.

e The IVC system is superior to the SEVC system in terms
of the converted speech’s quality and similarity.

Figure 4 shows that the IVC system outperforms the SEVC
model consistently across all gender combinations in terms of
converted speech’s quality. Some gender combinations see im-
provement in converted speech quality when using more target-
speaker utterances to extract i-vectors and to estimate speaker
embeddings. As for the similarity performance of the converted
speech, Figure 5 shows that the IVC system achieves higher
similarity score than the SEVC system for all gender combina-
tions. For both systems, the similarity score is higher when the
target speaker is female. One possible reason is that more fe-
male speakers than the male speakers are used during training.
It is expected that the gap will diminish when a more balanced
training corpus is used. We see consistent improvement in sim-
ilarity score when more speech samples are used to compute
target speaker i-vectors and speaker embeddings. The rational-
ity behind this is that the target speaker characteristics can be
represented more appropriately when more target speech sam-
ples can be obtained. However, when trained with such small
multi-speaker speech corpus, the IVC system is able to achieve
acceptable conversion similarity with only one target-speaker
utterance.

5. Conclusions

In this paper, we have proposed the IVC system and the SEVC
system, which aim to effectuate VC across arbitrary speakers
(refered as any-to-any VC). Experiments have verified the ef-
fectiveness of both systems in achieving any-to-any VC using
only one target-speaker utterance. The IVC system is supe-
rior to the SEVC system in terms of the quality of the con-
verted speech and its similarity to the utterance produced by
the genuine target speaker. The two proposed systems have
no adaptation procedure, which means that the trained systems
can be used directly for new source-target speaker pairs. More-
over, the two proposed systems have no requirement for parallel
data and are able to readily make use of available speech cor-
pora for model training. The proposed systems are expected to
achieve higher quality and similarity when larger speech cor-
pora are used for training. Future work will include improving
the proposed system by substituting the Griffin-Lim algorithm
with better vocoders.
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