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Abstract
J-vector and joint Bayesian have been proved to be very
effective in text dependent speaker verification with short-
duration speech. However current state-of-the-art framework
often consider training the J-vector extractor and the joint
Bayesian classifier separately. Such an approach will result in
information loss for j-vector learning and also fail to exploit an
end-to-end framework. In this paper we present a integrated
approach to text dependent speaker verification, which consists
of a siamese deep neural network that takes two variable length
speech segments and maps them to the likelihood score and
speaker/phrase labels, where the likelihood score as a loss
guide is computed by a variant joint Bayesian model. The
likelihood loss guide can constrain the j-vector extractor for
improving the verification performance. Since the strengths
of j-vector and joint Bayesian analysis appear complementary
the joint learning significantly outperforms traditional separate
training scheme. Our experiments on the the public RSR2015
part I data corpus demonstrate that this new training scheme
can produce more discriminative j-vectors and leading to
performance improvement on the speaker verification task.
Index Terms: speaker verification, siamese network, joint
learning, j-vector, joint Bayesian analysis

1. Introduction
Text-dependent speaker verification has lexical constraints
which require the matching of both voice characteristics
and the pass-phrases being spoken. As opposed to text-
independent speaker verification, where the speech content is
unconstrained, text-dependent systems are much preferred for
security applications since they showed higher accuracy on
short-duration sessions [1, 2].

In the literature, the previous methods considered for
text-dependent speaker verification can be grouped into two
categories. The first category is based on the traditional state-
of-the-art GMM-UBM or i-vector approach, which may not
work well in this case [3, 1, 4]. Larcher et al. [1] use a Hidden
Markov Model (HMM) system termed HiLAM to model each
speaker and each state corresponding senones; Stafylakis et
al. [5] propose to use JFA to extract global utterance vector and
local vector, which are fed into a joint density backend.

In the second category, deep models are ported to speaker
verification: deep neural network (DNN) is used to estimate the
frame posterior probabilities [6]; DNN as a feature extractor for
the utterance level representation [7]; Matejka et al. [8] have
shown that using bottle-neck DNN features (BN) concatenated
to other acoustic features outperformed the DNN method for
text-dependent speaker verification; end-to-end deep learning
jointly optimizes the speaker representations and models [2];
multi-task deep learning jointly learns both speaker identity and
text information [9].

This paper is based on the work of Chen et al. [9], in
which the j-vector was introduced as a kind of more compact
representation for text dependent utterances, and the classic
probability linear discriminant analysis (PLDA) was used as
the back-end classifier [10, 11] and work of [12], in which
the state-of-the-art joint Bayesian approach is proposed to
model the two facial images jointly with an appropriate prior
that considers intra- and extra-personal variations over the
image pairs. Since the feature extraction and classification are
completely separated, these approaches may lead to information
loss and also fail to exploit an end-to-end framework.

In order to develop an integrated framework of j-vector
extraction and joint Bayesian modeling for text-dependent
speaker verification, we propose to add the likelihood score of
a variant joint Bayesian as a loss guide to constrain the j-vector
extractor network for improving the verification performance.
Specifically we construct a siamese network has two same
branches with shared weights, where each branch is a usual
j-vector extractor and has its own multi-task cross-entropy
loss. The proposed likelihood loss guide is added to the output
layer of the siamese network as a constraint of the j-vector
extraction. This joint learning of j-vector extractor network
and joint Bayesian model will be called J3 in this work.

Our contribution is two-fold. Firstly we integrate the joint
Bayesian into the training of j-vector extraction network, make
two steps of speaker verification into a novel unified J3 deep
learning architecture, which leads to a significant improvement
for the speaker verification performance on RSR2015 part III.
Secondly in order to obtain better j-vector and verification
performance through J3, we propose a novel training scheme
that keep a snapshot of the joint Bayesian which is updated
once in m (m ≥ 1) epochs and fixed such snapshot during the
updating of the j-vector extraction network in these m epochs.

The remainder of this paper is organized as follows: Section
2 reviews the standard j-vector and joint Bayesian approach.
Section 3 describes the approach of joint learning of j-vector
extractor and joint Bayesian model for text dependent speaker
verification. The detail experimental results and comparisons
are presented in Section 4 and the whole work is summarized in
Section 5.

2. J-vector and joint Bayesian baseline
approach

The standard j-vector system introduced in [9] and joint
Bayesian model [12] is used as the baseline in this work. This
section gives a brief review of this baseline.

2.1. J-vector extraction

Chen et al. [9] proposed a method to train a DNN to make
classifications for both speaker and phrase identities by
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minimizing a total loss function consisting a sum of two
cross-entropy losses as shown in Fig. 1 - one related to the
speaker label and the other to the text label. Once training is
complete, the output layer is removed, and the rest of the neural
network is used to extract speaker-phrase joint features. That
is each frame of an utterance is forward propagated through
the network, and the output activations of all the frames are
averaged to form an utterance-level feature called j-vector.
The enrollment speaker models are formed by averaging the
j-vectors corresponding to the enrollment recordings.

Figure 1: Multi-task joint learning DNN as j-vector extractor.

2.2. The joint Bayesian model

For the back-end, the state-of-the-art joint Bayesian model [12]
is employed as a classifier for speaker verification. Classical
joint Bayesian model assumes the observed feature, e.g. the j-
vector, as the result of a generative model. For simplicity of
notation joint Bayesian model with only single speaker label is
used as an example. Assume that the training data consists of
I speakers each with Hi sessions, joint Bayesian models data
generation using the following equation:

xij = µ + zi + ϵij .

zi and ϵij are defined to be Gaussian with diagonal covariance
Σz and Σϵ respectively. Let θ = {µ, Σz, Σϵ}, xi = {xij : j =
1, ..., Hi}, X = {xij ∈ RD : i = 1, ..., I; j = 1, ..., Hi},
and the term µ represents the overall mean of the training
vectors.. More formally the model can be described in terms
of conditional probabilities:

p(xij |zi, θ) = N (xij |µ + zi, Σϵ),

p(zi) = N (zi|0, Σz),

where N (x|µ, Σ) represents a Gaussian in x with mean µ and
covariance Σ.

The parameters θ of this joint Bayesian model can be
estimated using the Expectation Maximization (EM) [13]
algorithm. The auxiliary function for EM is

Q(θ|θt) = EU,V |X,θt [log p(X, U, V |θ)]

=EU,V |X,θt





I∑
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M steps: update the parameter θ. Indeed we have
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.

With the learned joint Bayesian model, given a test xt and
an enrolled model xs, the likelihood ratio score is

l(xt, xs) =
P (xt, xs|same-speaker)

P (xt, xs|different-speakers)

=

∫
p(xt, xs, z|θ)dz∫

p(xt, zt|θ)dzt

∫
p(xs, zs|θ)dzs

=

∫
p(xt, xs|z, θ)p(z)dz∫

p(xt|zt, θ)p(zt)dzt

∫
p(xs|zs, θ)p(zs)dzs

=

N (

[
xt

xs

]
|
[
µ
µ

]
,

[
Σz + Σϵ Σz

Σz Σz + Σϵ

]
)

N (xt|µ, Σz + Σϵ)N (xs|µ, Σz + Σϵ)
.

Whereas the multi-task objective has been shown to enable
the training of DNNs for j-vector extraction for challenging
short duration text-dependent speaker verification problems, a
disadvantage of the baseline with j-vector/joint Bayesian is that
the post-classifier is not part of the original objective function.
On the other hand for joint Bayesian analysis the objective
function minimizing during training is directly related to the
speaker/phrase verification accuracy. We seek to combine the
benefits of both frontend and backend in a strategy reminiscent
of siamese network except that here we still keep the multi-task
objective for j-vector extraction. This intuitive idea result in the
following J3 architecture.

3. J3 architecture
Generally speaking J3 is a siamese DNN with an additional
multi-task loss on each branch. We extent the architecture in
Figure 1 in order to created a siamese network as in Figure 2
which we refer as J3 network with one original objective in j-
vector extraction network and the other objective is obtained
by using joint Bayesian resulted log likelihood of the input two
j-vectors as a guide.

3.1. Training of J3

In order to obtain a better performance, we firstly do the
initialization of J3 network by pre-train an initial j-vector
extraction neural network on the background data of RSR2015
part III by optimizing multiple classification-based cross
entropy loss objective functions under the guide of the speaker
and phrase ID information. For the speaker verification task,
an effective speaker representation is necessary or the first
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step to achieve a good performance. These j-vectors learned
from the background data is employed for training a good
initial joint Bayesian model of j-vector verification, which can
generate some useful knowledge to further guide the process
of network optimization. Furthermore, the j-vector is also
the basic of learning a distance for speaker verification in the
whole framework.

Figure 2: The proposed J3 framework of text-dependent speaker
verification.

After the initialization (or pre-training) of both the j-vector
extractor network and the joint Bayesian model, then we can
start to train the J3 network. The training will last for several
epochs periodically. More specifically, we maintain a snapshot
of the joint Bayesian model which is updated periodically, say
after every m (m ≥ 1) epochs. Whenever the joint Bayesian
model is updated, it will be used as a additional log likelihood
loss to guide the training of j-vector extraction network.

We explain the idea and process in detail. In each period
there are two steps: one step is to update the joint Bayseian
model with the j-vector extractor network fixed, that is all
utterance pairs are fed into the j-vector extractor network and
result in output j-vector pairs (xt, xs) which are used in the
update or training of the joint Bayesian model (by using the
method in Section 2); the other step is to update the j-vector
network with fixed joint Bayesian model, where three kinds
of supervised information are used to modify the gradient
direction, one is the original multi-task cross entropy loss

lmtce = −
∑

t

∑

c

1{lt=c} log p(xt, W )

in j-vector network training in Section 2, where W the
parameter of the J3 network, xt and lt are the input and
the ground-truth label respectively. The second loss is the
traditional training criterion provided by the siamese network

lsia =
∑

t,s

[(1 − b) exp(S(xt, xs, W )) + b exp(−S(xt, xs, W ))]

which is to increase the similarity between true pairs and reduce
that of imposter pairs, where S(xt, xs, W ) is the similarity
output produced by the siamese network and b is the true binary
label. The third loss is provide by the square difference of score
produced by the joint Bayesian model and output of the siamese
network

lj =
1

N

∑

t,s

(S(xt, xs, W ) − J(xt, xs))
2

where J(xt, xs) is the log likelihood score provide by the
snapshot of the joint Bayesian model. Finally these three losses
lmtce, lsia and lj are summed as the whole loss, which is used
to update the parameter W of the siamese network.

Algorithm 1 Joint training of J3 network
Input: start with random weights of the siamese network and
the parameters of joint Bayesian; utterance samples and labels.
0: initialization: pre-train the branch of j-vector extractor
network in siamese network with utterances as inputs and
speaker/phrase IDs as outputs using multi-task learning in
Section 2, result in a j-vector extractor which is used to extract
j-vectors to pre-train the joint Bayesian classifier.
1: repeat: for epoch = 1,2,...
2: if mod(epoch,m)==0; then fix the siamese network, and
feed all utterance pairs into the j-vector network and result in
output j-vector pairs (xt, xs) which are used to update of the
joint Bayesian model.
3: else fix the joint Bayesian model, update the siamese
network with the loss lmtce + lsia + lj using stochastic gradient
method.
4: until stopping conditions are satisfied.
Output: J3 network.

3.2. Verification with J3

In the test process, we feed each pair of utterances into our
J3 network framework and output a predicted similarity for
the speaker verification task. Obviously here are two paths
of verification: one is directly use the output of the siamese
network that is the S(xt, xs, W ); the other is to use siamese
network as the j-vector extractor and the joint Bayesian as
a classifier. Empirical experiments show that both methods
outperform traditional separately trained methods

3.3. Score normalization

In order to transform log likelihood ratio scores from different
speakers into a similar range by using

s′ =
s − µI

σI

so that a common threshold can be used, where µI and σI

are the approximated mean and standard deviation of the
impostor score distribution respectively. We tried three score
normalization method: zero normalization (z-norm) uses
a batch of non-target utterances against the target model
to compute the mean µI and standard deviation σI ; test
normalization (t-norm) uses the unknown speaker’s feature
vectors against a set of impostor models to compute the
statistics; the zero and test normalized scores are finally
averaged to form the s-normalized scores [5]. Finally since
s-norm gets the best performance, we only report the results of
s-norm in this work.B

4. Evaluation and discussion
In this section, we describe the experimental setup and results
for the proposed method on the public RSR2015 English
corpus [1] and our internal Huiting202 Chinese Mandarin
database collected by the Huiting Techonogly2.

2http://huitingtech.com/
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4.1. Experimental setup

RSR2015 corpus [1] was released by I2R, is used to evaluate
the performance of different speaker verification systems. In
this work, we follow the setup of [14], the part I of RSR2015
is used for the testing of J3. The background and development
data of RSR2015 part I are merged as new background data to
train the J3.

Our internal gender balanced Huiting202 database is
designed for local applications. It contains 202 speakers
reading 20 different phrases, 20 sessions each phrase. All
speech files are of 16kHz. 132 randomly selected speakers
are used for training the background multi-task learned DNN,
and the remaining 70 speakers were used for enrollment and
evaluation.

In this work, 39-dimensional Mel-frequency cepstral
coefficients (MFCC, 13 static including the log energy + 13 ∆
+ 13 ∆∆) are extracted and normalized using utterance-level
mean and variance normalization. The input is stacked
normalized MFCCs from 11 frames (5 frames from each side
of the current frame). The DNN branch used in J3 has 6 hidden
layers (with sigmoid activation function) of 2048 nodes each.
The J3 network is trained by using the Algorithm 1. Once the
J3 is trained, the j-vector can be extracted during the enrollment
and evaluation stages.

4.2. Results and discussion

Four systems are evaluated and compared across above
conditions:

• j-vector: the standard j-vector system with cosine
similarity.

• joint Bayesian: the j-vector system with classic joint
Bayesian in [12].

• J2: joint training of j-vector extractor and joint Bayesian,
and use the siamese network as the j-vector extractor and
the joint Bayesian as a backend as described in Section
3.

• J3: joint training of j-vector extractor and joint Bayesian,
and directly use the similarity output of the siamese
network to do verification as described in Section 3.

When evaluation a speaker is enrolled with 3 utterances of
the same phrase. The task concerns on both the phrase content
and speaker identity. Nontarget trials are of three types: the
impostor pronouncing wrong lexical content (impostor wrong,
IW); a target speaker pronouncing wrong lexical content (target
wrong, TW); the imposter pronouncing correct lexical content
(impostor correct, IC).

The class defined in j-vector in all models is the multi-
task label of both the speaker and phrase. The joint Bayesian
method is trained using the j-vectors, the number of principle
components is set to 100 and then the joint Bayesian model
is estimated with 10 iterations. For J2 and J3, the setting of
the branch DNN is the same as j-vector extractor network in j-
vector, the setting of joint Bayesian component is the same as
joint Bayesian.

Table 1 and 2 compare the performances of all above-
mentioned systems in terms of equal error rate (EER) for the
three types of nontarget trials. Obviously both J3 and J2 is
superior to the standard joint Bayesian and j-vector, regardless
of the test database. Since joint training system can explore
both the j-vector extractor network and joint Bayesian model,
and further help and guide each other in training to improve, it
constantly performs better than standard systems.

Table 1: Performance of different systems on the evaluation set
of RSR2015 part I in terms of equal error rate (EER %).

EER(%) j-vector joint Bayesian J2 J3
IW 0.95 0.02 0.02 0.02
TW 3.14 0.03 0.02 0.02
IC 7.86 3.61 2.81 2.42

Total 1.45 0.46 0.35 0.28

Table 2: Performance of different systems on the evaluation set
of Huiting202 in terms of equal error rate (EER %).

EER(%) j-vector joint Bayesian J2 J3
IW 0.86 0.10 0.08 0.07
TW 6.71 0.04 0.04 0.03
IC 4.57 2.52 2.07 1.87

Total 1.37 0.45 0.28 0.23

5. Conclusion
In this paper we have proposed J3 a joint learning approach
to integrated j-vector extractor and the joint Bayesian model
into one unified framework. The most important advantages of
J3, compared to standard j-vector with joint Bayesian, is that
in J3 both j-vector extraction component and joint Bayesian
component can help to improve each other during the joint
training. The jointly optimized hybrid network outperformed
both the plain j-vector and joint Bayesian methods. Reported
results showed that J3 provided significant reduction in error
rates over conventional systems in term of EER.
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