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Abstract
Thus far, voice conversion studies are mainly focused on the
conversion of spectrum. However, speaker identity is also
characterized by its prosody features, such as fundamental fre-
quency (F0) and energy contour. We believe that with a better
understanding of speaker dependent/independent prosody fea-
tures, we can devise an analytic approach that addresses voice
conversion in a better way. We consider that speaker dependent
features reflect speaker’s individuality, while speaker indepen-
dent features reflect the expression of linguistic content. There-
fore, the former is to be converted while the latter is to be carried
over from source to target during the conversion. To achieve
this, we provide an analysis of speaker dependent and speaker
independent prosody patterns in different temporal scales by us-
ing wavelet transform. The centrepiece of this paper is based on
the understanding that a speech utterance can be characterized
by speaker dependent and independent features in its prosodic
manifestations. Experiments show that the proposed prosody
analysis scheme improves the prosody conversion performance
consistently under the sparse representation framework.
Index Terms: Wavelet transform, prosody analysis, voice con-
version

1. Introduction
The goal of voice conversion (VC) is to convert one speaker’s
voice to sound like that of another [1, 2]. Speaker identity is
characterized by 1) linguistic factors that are reflected in sen-
tence structure and lexical choice; 2) supra-segmental factors,
or prosodic features, such as stress, tone, or word juncture that
extend over syllables, words, or phrases; and 3) segmental fac-
tors that are related to short term features, such as short-time
spectrum and formants [3, 4]. When the language content is
fixed, the supra-segment and the segmental factors are related
to speaker individuality. Ideally, the voice conversion technol-
ogy is able to convert both the supra-segment and the segmental
factors. Unfortunately, many voice conversion frameworks are
mainly focusing on spectral conversion [5, 6, 7, 8, 9, 10, 11].
We also note that some have ventured into the idea of speaker
independent representation such as conditional restricted boltz-
mann machines with speaker independent pre-training [12] and
DNN-based voice conversion framework in speaker indepen-
dent space [13], where a database from a large speaker popula-
tion is required.

Computational modeling of prosody has been a challeng-
ing task for many reasons. For example, prosody is described
at supra-segmental level while spectrum is at short-time frame;
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prosody consists of F0 and energy among others that can vary
highly. Prosody can be used contrastively to express emo-
tions (angry or joyful), lexical stress, or speech acts in a di-
alogue (statement or question) that we call speaker indepen-
dent prosody, it also carries personal, dialectal, and other back-
ground characteristics that belong to an individual. We call
them speaker dependent prosody [14].

Prosody is also hierarchical in nature [15][16] and it can be
affected by both short term as well as long term dependencies
[17]. Fundamental frequency (F0) is a crucial prosodic feature
in speech, hence previous studies of prosody conversion mainly
focus on transformation of F0 [18]. The continuous wavelet
transform (CWT) has been used for the analysis and model-
ing of F0 within an hidden Markov model (HMM) framework
[19][20]. With this motivation, voice conversion frameworks
such as DKPLS [17] and exemplar-based prosody conversion
[21][22] use CWT for F0 decomposition. More recently, we
find that CWT decomposition for F0 and energy contour are
effective in emotional voice conversion [23] and phonetically
aware prosody conversion [15]. Unfortunately, the prior work
hasn’t provided a statistical analysis over the CWT decompo-
sitions from the viewpoint of speaker dependent and speaker
independent prosody.

In this paper, we propose comprehensive frameworks, that
are based on Pearson Correlation Coefficient (PCC) and Root
Mean Squared Error (RMSE), to understand the speaker depen-
dent and independent characteristics of prosody. We report our
findings from the CWT decompositions of F0 and energy con-
tours at different scale through a statistical analysis. The pro-
posed prosody analysis also improves the state-of-the-art voice
conversion frameworks by carrying over the speaker indepen-
dent (SI) prosody features from source to target, while trans-
forming the speaker dependent (SD) prosody features of source
to those of target. For the first time, we present the sparse
representation frameworks that handles speaker dependent and
speaker independent prosody differently during the transfer.

The main contributions of this paper include, 1) we provide
an understanding from the perspective of speaker dependent and
independent prosody features; 2) we devise a statistical analy-
sis framework to assess the speaker dependent and independent
prosody, that uses PCC and RMSE; 3) we incorporate the pro-
posed prosody analysis with voice conversion, that consistently
outperforms the state-of-the-art baseline.

This paper is organized as follows: In Section 2, we de-
scribe the details of CWT decomposition of F0 and energy con-
tour. In Section 3, we explain the analysis of speaker dependent
and independent prosody features. In Section 4, we describe the
proposed prosody transfer. Section 5 reports the experimental
results. Finally, we conclude in Section 6.
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(a) Decomposition of energy contour

0 200 400 600 800 1000

-2

0

2
Scale 1

0 200 400 600 800 1000

-5

0

5
Scale 2

0 200 400 600 800 1000

-10

0

10
Scale 3

0 200 400 600 800 1000

-20

0

20
Scale 4

0 200 400 600 800 1000

-20

0

20
Scale 5

0 200 400 600 800 1000

-20

0

20
Scale 6

0 200 400 600 800 1000

-20

0

20
Scale 7

0 200 400 600 800 1000

-20

0

20
Scale 8

0 200 400 600 800 1000

-10

0

10
Scale 9

0 200 400 600 800 1000

-5

0

5
Scale 10

(b) Decomposition of F0 contour

Figure 1: CWT analysis of prosody features of an utterance

2. Prosody Modelling in Voice Conversion
Prosody conveys linguistic, para-linguistic and various types of
non-linguistic information, such as speaker identity, intention,
attitude and mood [24, 25]. It is inherently supra-segmental
[26, 27] due to the reason that the variations of prosody cannot
be derived from the segmental sequence [16]. It is affected by
long-term dependencies at different levels such as word, phrase
and utterance. At the same time, it is also affected by segmental
differences [16]. For example, voiceless segments lack explicit
F0 values and high vowels generally have higher F0 than low
vowels.

The fundamental frequency (F0) of speech is one of the
most important prosodic features that should be taken into ac-
count in a comprehensive voice conversion framework. F0 fea-
tures extracted from STRAIGHT vocoder are low dimensional
features that have lower data complexity than spectral features.
A simple approach to F0 conversion is what we call Gaussian
normalized transformation [28], a linear transformation. It is
clear that it is not adequate to use a linear model to represent all
variations in different temporal scales.

Recently, CWT was shown to effectively model F0 in dif-
ferent temporal scales that improves the speech synthesis per-
formance [19, 27, 20]. It was also introduced to sparse rep-
resentation [22], DKPLS for voice conversion [17], emotion
conversion with arbitrary F0 scales [29] and adaptive scales for
emotional voice conversion [30]. It was also studied that CWT
decompositions of F0 and energy contours provide a way to ma-
nipulate the prosody of utterances [23] .

The continuous wavelet transform of an input signal f0 can
be written as

W (τ, t) = τ−1/2

∫ ∞

−∞
f0(x)ψ

(
x− t

τ

)
dx, (1)

where ψ is the Mexican hat mother wavelet. If we fix the anal-
ysis at 10 discrete scales, f0 can be represented as [20]

Wi(f0)(t) =Wi(f0)(2
i+1τ0, t)(i+ 2.5)−5/2, (2)

where i = 1, ..., 10 and τ0 = 5ms. These time scales were
originally proposed in [22] and in a hierarchical prosody model
[19], that were further used in some voice conversion applica-
tions [23, 21, 22, 15]. The use of these particular scales is mo-
tivated by the attempt to relate the scales to different levels of
linguistic structure. In this representation, lower scales capture
short-term variations and higher scales capture the long-term
variations associated with the utterance. The reconstruction for-
mula is given as follows:

f0(t) =
10∑

i=1

Wi(f0)(t)(i+ 2.5)−5/2. (3)

We adopted CWT to decompose the F0 and energy contour into
10 temporal scales, that can be used to model different prosodic
levels ranging from micro-prosody to sentence levels. As CWT
is sensitive to discontinuities in the prosody features, the fol-
lowing pre-processing steps are needed: 1) transformation of F0
and energy values from linear to logarithmic scale, 2) smooth-
ing F0 and energy contour by using 3-point mean filter 3) lin-
ear interpolation over unvoiced regions, 4) normalizing the re-
sulting F0 and energy contour to zero mean and unit variance.
Figure 1 illustrates the CWT decompositions of F0 and energy
contour at 10 different scales for the same utterance. Different
from all the previous studies, our main focus here is to ana-
lyze the speaker dependent and speaker independent elements
through CWT decompositions in different temporal scales. We
hope to associate the temporal scales with speaker dependency
through a statistical analysis.

3. Analysis of Prosody Features for Voice
Conversion

Prosody typically reflects a combination of features from both
the speaker and the utterance. The examples of speaker fea-
tures include the dialectal background, the lexical choice in the
expression, the speaking rate, the emotional state of the speaker
etc; while the examples of utterance features include the form of
the utterance (statement, question, or command); the presence
of irony or sarcasm; emphasis, contrast, and focus etc. In gen-
eral, we consider that speaker features are speaker dependent,
and utterance features are speaker independent because they are
manifested in the same way by all speakers.

The prosody mapping approaches [18, 17, 21, 22, 15] that
have been proposed so far, don’t study the problem from the
view point of speaker dependent and independent features in
speech utterances. Recently proposed deep learning approaches
for spectral mapping [31, 32] do not handle F0 and energy con-
tours either due to lack of appropriate modeling mechanism.

In voice conversion, we would like to carry over the speaker
independent prosody from the source to the target, but to re-
place the speaker dependent prosody of source speaker with that
of target speaker. To do this, we need to be able to identify
speaker dependent and speaker independent prosodic elements
in an utterance. We consider that the CWT decompositions of
F0 and energy contour at different temporal scales represent the
speaker dependent and speaker independent prosodic elements,
that we would like to empirically prove in this paper. To our
best knowledge, this paper is the first to perform such a statisti-
cal analysis to benefit the design of voice conversion system.

Figure 2 shows the proposed system diagram for the anal-
ysis of speaker dependent and speaker independent prosody
patterns. Pearson correlation coefficient (PCC) and root mean
square error (RMSE) between the respective wavelet decompo-
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Figure 2: The proposed workflow to assess the inter-speaker correlation of prosodic patterns at different temporal scales, where
k,m = 1, 2, ..., 10.

2 4 6 8 10

Scales

0.65

0.7

0.75

P
C
C

2 4 6 8 10

Scales

0

0.02

0.04

R
M
S
E

(a) Energy

2 4 6 8 10

Scales

0.2

0.4

0.6

P
C
C

2 4 6 8 10

Scales

0

0.2

0.4

R
M
S
E

(b) F0

Figure 3: Comparison of inter-speaker prosody contours in
different temporal scales using Pearson correlation coefficient
(PCC) and root mean square error (RMSE), with 95 % confi-
dence interval.

sitions of all speaker pairs (k, m) are employed as the objective
measures to compare the speakers. Suppose that we have two
signals K, and M. The Pearson correlation coefficient of two
signals is a measure of their linear dependence that is calculated
as follows:

p(K,M) =
cov(K,M)

σKσM
(4)

where σK and σM are the standard deviation of K and M,
respectively. The proposed framework includes the following
steps: 1) As needed for PCC and RMSE, we perform frame
alignment by using DTW, 2) using Eq. (1) and (2), we perform
CWT to decompose the F0 and energy contour into different
temporal scales, 3) we calculate the inter-speaker linear depen-
dency between the same temporal scales by using PCC. We also
calculate the inter-speaker distance between the same temporal
scales by RMSE, 4) finally, we report the overall mean and vari-
ance of all speaker pair combinations at different scales for F0
and energy contour. We conduct the experiments on Voice Con-
version Challenge (VCC) 2016 database [33] that is recorded
from 5 female and 5 male US English speakers. In our experi-
ments, we use data from all 10 speakers. STRAIGHT is used as
the vocoder for both analysis and synthesis.

As can be seen from Fig. 3, middle scales (scales 4-8) pro-
vides lower correlation and higher RMSE values, that means
that they carry more speaker dependent information. However,
the rest of the scales carry less speaker dependent information,
in other words, more linguistic information. We are glad that
we are now able to identify the relationship between temporal
scales and speaker dependency.

We can interpret the findings as follows, the low tempo-
ral scales (scales 1-3) represent short-term/micro-level prosodic
elements and the high temporal scales (scales 9-10) repre-
sent long-term ones. We note that prosodic features are the

properties of speech units larger than the individual segments.
Short-term prosodic elements describe what is within the indi-
vidual segments, therefore, don’t vary much from speaker to
speaker. Long-term prosodic elements describe the sentence
level prosody, such as the form of the utterance (statement,
question, or command), by following certain prosodic tem-
plates, therefore, don’t vary with the speaker either. The middle
temporal scales (scales 4-8) capture supra-segmental informa-
tion such as intonation, tone, stress, and rhythm over words and
phrases, therefore, we observe a large speaker variation. In the
next section, we will propose a voice conversion framework that
carry over low and high scales prosodic elements from source to
target, while transforming the middle scales prosodic elements
to the target.

4. Prosody Conversion
In exemplar-based sparse representation (SR)[22], spectral and
prosody features are converted via a pair of coupled dictionar-
ies, denoted as A and B, each consists of spectrum, aperiodic-
ity component and the CWT representation of F0. At run-time,
both the spectral and prosody features of a source utterance X
can be represented as X ≈ AH. Non-negative factorization
(NMF) technique is employed to estimate the activation matrix
H, which is constrained to be sparse. The converted spectral
and prosody features can be written as Ŷ = BH.

Phonetic sparse representation (PSR) [15] is an extension
to sparse representation [22] by replacing the coupled dictio-
nary [A;B] with multiple phonetic sub-dictionaries that consist
of both spectrum and prosody features. Phonetic sparse repre-
sentation makes use of phonetic information to achieve better
activation matrix estimation, thus, better voice conversion.

In Section 3, we provide an analysis of speaker dependent
and independent prosody features through CWT decomposi-
tion. We show that the middle scales of both F0 and energy con-
tour contain more speaker dependent information while the rest
of the scales carry less speaker dependent information. With
this findings, we would like to see if it helps in voice conversion
experiments to only convert the speaker dependent prosodic el-
ements (scales 4-8).

5. Experiments
We conduct experiments using VCC 2016 database [33] to as-
sess the performance of the proposed speaker dependent and
independent prosody features in voice conversion. We would
like to validate the idea that the CWT decomposition of F0 and
energy contour represents the speaker dependent and speaker
independent prosody in different scales. We choose exemplar-
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Framework # Scales # Training Pairs PCC

SR: F0

1-10 20 0.753
4-8 20 0.771
1-10 30 0.768
4-8 30 0.794

SR: E

1-10 20 0.796
4-8 20 0.807
1-10 30 0.812
4-8 30 0.821

PSR: F0

1-10 20 0.811
4-8 20 0.824
1-10 30 0.828
4-8 30 0.837

PSR: E

1-10 20 0.842
4-8 20 0.854
1-10 30 0.851
4-8 30 0.862

Table 1: The PCC between the target prosodic contour and the
converted one in sparse and phonetic sparse representation ex-
periments. ’# Scales’ represents the CWT scales of F0 and
energy contour that are converted. SR: F0 is for the F0 contour,
while SR: E is for the energy contour

based sparse representation [22, 15] for prosody conversion ex-
periments. Pearson correlation coefficient is used as an eval-
uation for F0 and energy contour conversion. It is important
to mention that the correlation coefficients for both F0 and en-
ergy are calculated between the frames aligned by dynamic time
warping.

5.1. Objective Evaluations

We first conduct experiments for the wavelet analysis of
prosody features in sparse representation framework with 20,
30 source-target utterance pairs in training phase. We use 3
consecutive frames to achieve a more reliable activation matrix
estimation. To observe the relationship between the wavelet
scales and speaker dependency, we conduct experiments with
2 different settings: 1) all scales of F0 and energy contour are
converted, and 2) middle scales (4-8) are converted from source
speaker to target, while the rest is directly copied from source
speaker.

Table 1 reports the PCC values for a number of settings in
a comparative study. We examine the Pearson correlation coef-
ficients (PCC) between the target prosody contour and the con-
verted one in sparse and phonetic sparse representation (PSR)
frameworks. In all experiments, we use exemplars that span 3
consecutive frames. Moreover, in PSR experiments, we use a
DNN-HMM based ASR [36] to obtain phone labels and phone
boundaries. To capture the phone transition, we use biphone ex-
emplars together with monophone exemplars while construct-
ing the phonetic dictionary. In both F0 and energy contour con-
version, we observed that we get better PCC results by con-
verting scales 4-8 than converting all scales. These results vali-
date our findings in Section 3 that the middle scales carry more
speaker dependent information, while the other scales are rel-
atively speaker independent. We also observed that increasing
the number of training data improves the prosody conversion
performance.

As PSR [15] takes into account phonetic information while
estimating the activation matrix, it is not suprising that PSR con-
sistently outperforms SR [22] framework for both F0 and en-
ergy conversion. PSR achieves higher PCC values than SR for

CWTSpeaker Sa

Speaker Dependent  
Prosody

Speaker Independent 
Prosody

CWTSpeaker Sb

Synthesize Speaker Sa, or 
Speaker Sb ? 

Figure 4: The listening experiment setup for speaker dependent
independent prosody study reported in Table 2.

both F0 and energy contour conversion. Overall, these results
show that the CWT decomposition of F0 and energy contours
can represent the speaker dependent and speaker independent
prosody in different scales, that improves the performance of
prosody transformation.

5.2. Subjective Evaluations

We further conduct listening experiment to assess the effect of
speaker dependent and independent prosody features in speaker
similarity. Our findings in Section 3 suggests that the mid-
dle scales carry more speaker dependent information, while the
other scales are more speaker independent. We devise a sub-
jective evaluation framework as given in Fig. 4. We first per-
form CWT on speaker Sa and speaker Sb, to decompose their
F0 contours into 10 temporal scales. Then we synthesize the
speech of speaker Sa with his speaker dependent prosody fea-
tures (scales 4-8) together with the speaker independent prosody
features (scales 1, 2, 3, 9, 10) of speaker Sb. Then we ask to 10
subjects to listen and choose the speaker identity that is closer
to the synthesized speech. We use four different Sa-Sb combi-
nations with each of them having 10 speech samples. In theory,
we expect listeners to choose Speaker Sa, as we carry over only
the speaker independent features, that we call linguistic infor-
mation, from Speaker Sb.

Speaker Sa Speaker Sb No preference
(82.0±2.0) % (6.0±1.8) % (12.0 ±1.5) %

Table 2: The preference tests with 95 % confidence interval for
the experiments illustrated in Fig. 4.

As given in Table 2, the speaker identity does not change as
long as we preserve the speaker dependent scales in the wavelet
analysis. This is also confirms our findings, that are reported in
objective evaluations.

6. Conclusion
In this paper, we perform an analysis on prosodic features in
terms of speaker characteristics. We have proposed a system
model to assess the speaker dependent and independent prosody
features and provide a better understanding of prosody pat-
terns of different speakers. Then, we incorporate this knowl-
edge to prosody conversion by carrying the speaker indepen-
dent prosody features from source speaker to the target, and
replace the speaker dependent prosody of source speaker to that
of target speaker in sparse and phonetic sparse representation.
We show that the CWT decomposition of a F0 and energy con-
tour can offer the speaker dependent and speaker independent
prosody in different scales, that can provide an useful tool for
prosody transformation.
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