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Abstract
A pre-recorded audio sample of an authentic speaker presented
to a voice-based biometric system is termed as a replay attack.
Such attacks can be detected by identifying the characteristics
of the recording device and environment. An analysis of dif-
ferent recording devices indicates that each recording device
affects the spectrum differently. It is also observed that each
feature captures specific characteristics of recording devices. In
particular, Mel Filterbank Slope (MFS) captures low-frequency
information corresponding to that of the low-quality recording
devices, while Linear Filterbank Slope (LFS) captures high-
frequency information which corresponds to that of a high-
quality recording device. The proposed approach uses MFS and
LFS along with Mel Frequency Cepstral Coefficients (MFCC)
and Constant-Q Cepstral Coefficients (CQCC) in a Decision-
level Feature Switching (DLFS) paradigm to determine whether
a given utterance is spoofed. The obtained results surpass the
state-of-the-art Light Convolutional Neural Network (LCNN)
based replay detection system with a relative improvement of
7.43% on the ASV-spoof-2017 evaluation dataset.
Index Terms: Replay attack detection, Filterbanks, MFS, LFS,
Anti-spoofing, ASV-spoof-2017, Feature-switching, DLFS

1. Introduction
Automatic speaker verification (ASV) is the process of verify-
ing an audio sample given a claim. ASV systems are robust
to acoustic variations and zero-impostor threats [1] to a great
extent, while the presentation attack detection (PAD) poses a
real threat for commercial exploitation of voice as a biomet-
ric. ISO/IEC 30107-1:20161 defines PAD as the presentation
of fake biometric sample to a biometric detection system. The
process of this intentional circumvention of ASV systems is re-
ferred to as spoofing. Spoofing an ASV system can occur in any
of the eight different stages as mentioned in [2]. Among the
eight stages, the sample acquisition stage is the easiest to spoof.
Four types of spoofing attacks that can occur at the sample ac-
quisition stage are (i) speech synthesis (ii) voice conversion (iii)
impersonation and (iv) replay attacks. The state-of-the-art ASV
systems are robust against impersonation [3, 4] but fail when
subjected to PAD attacks. The ASV-spoof-challenge was first
proposed in 2015 to detect attacks based on speech synthesis,
and voice conversion. Many spoof detection algorithms have
been able to counter such attacks [5–7]. The replay attack is a
process where the pre-recorded utterance of a genuine speaker
is replayed by an impostor to access the ASV system. The
ASV-spoof-2017 challenge was conducted to develop counter-
measures to detect replayed utterances collected from widely
varying acoustic conditions. A large variety of techniques have
been proposed to detect replay attacks in the recent literature. A
summary of the results of all the teams that participated in the
challenge can be found in [8].

1https://www.iso.org/standard/53227.html

A Light Convolutional Neural Network (LCNN) with Max-
Feat-Map (MFM) activation function was used for feature ex-
traction in [9]. The Discrete Fourier Transform (DFT) spectro-
gram of the data is used as the input to the LCNN and features
are extracted from the penultimate layer. A Gaussian Mixture
Model (GMM) classifier built using these features resulted in
an EER of 7.37% on the evaluation data. Late fusion of this
GMM system along with other classifiers improved the EER
to 6.73%. This system is considered as the state-of-the-art to-
day [9]. In [10], systems trained on the development data and
tested on the training data give better performance than any
other system in the literature (Section 2). This system cannot
be considered as the state-of-the-art as it violates the evaluation
protocol.

While MFM-LCNN focuses on the design of an appropriate
neural network architecture to learn the spoofed information,
we propose the use of features that are relevant to capture the
spectral characteristics of replayed utterances. The nature of the
recording device plays a vital role in distinguishing genuine and
replayed instances. A keen observation of the spectrogram of
the genuine and replayed utterances from a low-quality micro-
phone and high-quality microphone shows visible distortions in
low- and high-frequency regions of the spectrum respectively
(as highlighted by the ellipse in the insets in Figure 1).

The objective of this paper is to choose the feature that best
identifies a replayed instance in a given environment. MFS
features use the Mel scale which emphasizes low-frequency
regions [11, 12], while LFS uses the linear frequency scale
where the resolution at high-frequencies is better than that of
MFS [13]. Similarly, other features namely, MFCC and CQCC
may be useful for detection of other spectral artifacts. It is to
be noted that MFS and LFS are used for the first time for re-
play attack detection2, and it is shown that the performance
of the replay attack detection system is far better than that of
the MFCC/CQCC based systems. Since each of these features
may contribute to the detection performance, instead of score
fusion, a novel approach called Decision-level Feature Switch-
ing (DLFS) is proposed. DLFS chooses the feature that reposes
maximum confidence during decision making. Standard two
class GMM based replay detection systems are built using each
of the features, namely, MFS, LFS, CQCC and MFCC.

The rest of the paper is organized as follows. Section 2
briefly discusses a variety of features used in the literature for
replay detection. Sections 3 and 4 analyze the dataset and the
proposed features respectively. Section 5 explains the DLFS
approach for replay detection system. Section 6 describes the
experimental setup and result analysis followed by the conclu-
sion in Section 7.

2These two features are extensively used in the speaker verification
literature [11–13].
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(a) Genuine Utternace - 1
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(b) Replayed Instance - 1(b) Replayed Instance -1
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(b) Replayed Instance - 3
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(c) Replayed Instance -2

Figure 1: Subplot (a) is the spectrogram of a genuine utterance. Subplots (b) and (c) are the spectrograms of the replayed instances
of (a) recorded using the microphone of Samsung Galaxy S7 and a high-quality Zoom-H6 handy recorder. The high and low-frequency
regions are magnified and encircled in the insets to highlight the key difference between the instances.

2. Features used in prior work
An F-ratio probing tool is proposed in [14] to avoid the over-
fitting problem of model training by using the mean and co-
variance of trained models. The effectiveness of this tool
was demonstrated using Linear Frequency Cepstral Coeffi-
cients (LFCC) and Inverse MFCC (IMFCC) features. Au-
thors in [15] claimed that the replayed utterances have imper-
fections at high-frequencies near the Nyquist rate due to the
effect of anti-aliasing. Sub-band analysis using IMFCC and
LPCC residual features was used to illustrate this effect. Data-
augmentation was implemented in [16] to handle unseen real-
time data in test conditions. Single Frequency Filtering Cepstral
Coefficients (SFFCC) and High-frequency cepstral coefficients
(HFCC) were proposed for replay detection task in [17] and [18]
respectively. Experiments in [17] have shown that higher di-
mensional cepstral coefficients have more cues to detect the re-
played utterances than the lower dimensional coefficients.

In [19] the authors proposed a feature selection approach
where a ReliefF algorithm [20] and Minimum Redundancy-
Maximum Relevance (MRMR) approach [21] is used together
to detect the most discriminative and less redundant feature in-
formation. Authors also show that the inclusion of five static
pitch related features detects the replayed utterance better. A
comprehensive study of the relevance of different features for
replay utterance detection can be found in [22]. The fea-
tures considered include spectral sub-band based features along
with IMFCC, LFCC, and LPCC. Instantaneous frequency (IF)
was used along with Variable length Teager Energy Operator
(VTEO) based Energy Separation Algorithm (ESA) in [23] to
identify the replayed utterances. In [24] two new source fea-
tures, namely peak-to-side-lobe ratio and epoch strength were
proposed. An ensemble learning approach was proposed in
[25] with different classifiers and various features like CQCC,
MFCC, and Perceptual Linear Prediction coefficients (PLP). In
all these efforts, GMM classifier or a Deep Neural Networks
(DNN) or a Support Vector Machine (SVM) or a combination
of one or more of these three classifiers were used for final clas-
sification. MFCC and CQCC were used as the baseline systems.

3. ASV-spoof-2017 Dataset
A subset of RedDots data collection [26] and its replayed
derivatives constitute the ASV-spoof-2017 corpus [27]. The re-
played derivatives were generated in natural conditions from
different environments (E), using different recording devices
(R) and playback devices (P). The ASV-Spoof-2017 dataset has
three subsets namely training (train), development (dev), and

evaluation (eval). Table 1 shows the number of utterances and
the unique number of E-R-P (Environment-Recording device-
Playback device) combinations in each subset.

Table 1: Dataset Description.

Subset No. of Total no. No. of Utterances No. of Unique Total
Speakers utterances Genuine Replayed E-R-P duration

Train 10 3016 1508 1508 3 2.22 hrs
Dev 8 1710 760 950 10 1.44 hrs
Eval 24 13306 1298 12008 57 11.94 hrs

The train-dev subset and train-eval subset have only one
common E-R-P condition each whereas dev-eval subset has
seven common E-R-P conditions. The remaining set of E-R-
P conditions are not seen in the development or training data.
This poses a real challenge for handling unseen E-R-P condi-
tions.

4. MFS and LFS Features
The effectiveness of MFS and LFS features is evaluated in this
Section. As MFS and LFS are used for the first time for re-
play attack detection, a brief description of these features is
also presented. A replayed utterance contains both the gen-
uine speaker’s information and that of the E-R-P condition. A
recorded utterance inevitably captures the reverberation of the
recording environment unless a dedicated line-in and line-out
are used. Apart from the reverberation and noise information,
the impact of the recording device is the key factor that dis-
tinguishes the replayed instance from the genuine utterance.
Figure 1(a) shows the spectrogram of a genuine utterance by
Speaker-A, whereas Figures 1(b) and 1(c) show the replayed
instances of the same utterance through a Samsung Galaxy S7
microphone and high-quality Zoom-H6 Handy recorder respec-
tively. The spectrograms look more or less similar but (as indi-
cated in Section 1), minor differences can be seen at both low-
and high-frequency regions (as highlighted in the inset). Cep-
stral coefficients derived from the spectrum will simply aver-
age away these differences. MFS and LFS are spectral slope
features and are therefore likely to magnify the artifacts in the
spectrum as a function of frequency [11–13]. These features
have been exploited extensively in speaker verification [11, 12]
and diarization [13]. The block diagram of the feature extrac-
tion process for MFS and LFS is shown in Figure 2.

4.1. Mel Filterbank Slope Features
Mel filterbanks are based on the Mel scale, which gives higher
resolution at low-frequencies when compared to that of high-
frequencies [28]. MFS features are therefore expected to cap-
ture the variation in low-frequency regions in the replayed in-
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Figure 2: Extraction of MFS/LFS features

stances. Figure 1(b) is the spectrogram of a replayed instance,
recorded using a Samsung Galaxy S7 microphone. The spectro-
gram shows the presence of constant low-frequency component
throughout the replayed instance.

4.2. Linear Filterbank Slope Features
A digital recording device is typically associated with low-pass
anti-aliasing filter (AAF) at a particular cut-off frequency. A re-
played utterance undergoes this AAF at least twice which leads
to imperfections in the spectrum at the Nyquist frequency [15].
Although the effect of noise and reverberation are compensated
to a certain extent while using a high-quality recording device,
the effect of AAF persists. Hence features extracted from filter-
banks with low resolution in the high-frequency range, namely,
CQCC, MFCC, and MFS, may not be able to identify these
imperfections. Figure 1(c) is another replayed instance of the
same genuine utterance. The replayed instance is recorded us-
ing a Samsung Galaxy S7 microphone that uses an active noise
canceler for recording. Comparing Figure 1(a) and 1(c), it can
be seen that the spectrogram is more or less identical to that of
the genuine utterance (Figure 1(a)) except for artifacts near the
Nyquist frequency. This effect is better emphasized by a lin-
ear filterbank rather than a Mel filterbank owing to its higher
resolving power at high-frequencies.

5. DLFS Replay Detection System
As discussed in Section 4, MFS may capture almost all varia-
tions in low-frequency components and gross variation in high-
frequency components. On the other hand, LFS may not capture
the subtle low-frequency component variations as the resolution
is the same at all frequencies. Thus using the feature that bet-
ter identifies the difference will be a more suitable solution for
replay detection task. DLFS essentially uses the appropriate
feature for every utterance. Four individual GMM based re-
play detection systems are built using CQCC, MFCC, MFS and
LFS features. The set of these four features are referred to as
candidate features, and the feature-specific systems are referred
to as baseline systems in the rest of the paper. DLFS primarily
uses the scores from these GMM systems effectively to improve
replay detection performance. The process of developing the
baseline and DLFS systems is elaborated in the following sub-
sections.

5.1. Baseline Systems

The genuine and replayed utterances from the training data
are used to form genuine GMM (λGf ) and spoofed GMM
(λSf ) respectively where f ∈ F , and F={MFS, LFS, CQCC,
MFCC}. Development data is not used for model training. Fi-
nal score Sf (t) for every test utterance t, is computed using
log-likelihood scores (∧) as follows:

∧Gf (X ) = p(X|λGf ) and ∧Sf (X ) = p(X|λSf ) (1)
Sf (t) = ∧Gf (X )− ∧Sf (X ) (2)

where X = {x1,x2, · · · ,xn} is the set of n feature vectors
that make up the test utterance t. Based on the score Sf (t), a
label is assigned to every t as

lf =

{
genuine, if Sf (t) > 0
spoofed, if Sf (t) < 0

(3)

5.2. Cohort Normalization for Replay Detection

T-norm based score normalization is performed using cohorts
within the same feature space [29]. Since replay detection task
is a two-class problem, a test utterance classified as genuine
(class-1) will have cohorts from the spoofed class (class-2) and
vice-versa. The cohorts for the test utterances are chosen from
development data3. Scores of dev-data trials are pre-computed
using Equations (1) and (2). The score normalization with co-
hort scores is performed as follows:

1. The score Sf (t) and label lf of a test utterance t in a
feature stream f is obtained using Equations (2) and (3).

2. If the predicted label lf is genuine, the C closest pre-
computed scores from the spoofed class of the dev-data
are considered as cohort scores for t in the feature stream
f and vice-versa.

3. Using the mean (µCf ) and standard deviation (σCf ) of
the C cohort scores from feature stream f chosen in
Step-2, the normalized score Nf (t) is determined as

Nf (t) =
Sf (t)− µCf

σCf
, f ∈ F (4)

Score normalization is implemented on the eval-data using the
dev-data. The optimization of parameters for score normaliza-
tion is performed by dividing the dev-data in the ratio of 70:30,
where 70% trials are used for testing, and 30% trials are used to
choose cohort scores. The value of C is estimated empirically
for every trial t, and it is found that C > 30 does not change
µCf and σCf significantly. This process is repeated for every
feature f ∈ F and these normalized scores of the baseline sys-
tems are used for DLFS.

5.3. DLFS Architecture

LFS and MFS emphasize different portions of the spectrum as
shown in Section 4. Similarly, MFCC and CQCC may be rel-
evant for other types of environments. In speaker verification,
feature switching [30–32] identifies the optimal feature space
for every enrolled speaker during training, and testing is per-
formed in the optimal feature space of the claimed speaker. For
replay detection, a variant of feature switching termed as DLFS
is proposed. In the replay detection task, since the test utter-
ances do not have any claim, the optimal feature cannot be es-
timated apriori. The optimal feature is, therefore, determined
during the test using the scores and labels of all candidate fea-
tures F :

1. The trial utterance (t) is tested against all the baseline
systems, and the correponding normalized scores Nf (t)
and labels lf are obtained using Equations (1)-(4).

2. Voting is used to determine the final label (l̂) of the ut-
terance. Using l̂, the final score N̂ (t) is computed as

N̂ (t) =

{
max{Nf (t)}, if l̂ = genuine, f ∈ F
min{Nf (t)}, if l̂ = spoofed, f ∈ F (5)

3Since dev-data is not used for model training, the protocol of ASV-
spoof-2017 challenge is not violated [27].
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The f that corresponds to the final score N̂ (t) is cho-
sen as the optimal feature for t. Selection of maximum
or minimum score increases the confidence in classifica-
tion.

3. If the number of candidate features is even, the votes can
get evenly distributed for both the classes. In such cases,
N̂ (t) and l̂ are calculated as follows:

if (|a| > |b|) =⇒ l̂ = genuine ; N̂ (t) = a (6)

if (|a| < |b|) =⇒ l̂ = spoofed ; N̂ (t) = b (7)

where a = max{Ni(t)} and b = min{Nj(t)}. i and
j are the subsets of F with labels genuine and spoofed
respectively : (i ∩ j) = ∅ and (i ∪ j) = F . Choos-
ing the best feature increases the discriminability of the
classifier.

6. Experiments and Analysis
Features are extracted from genuine and replayed utterances
of the training data. The standard 25 ms frame size and 10
ms frame shift are used to extract all four candidate features
(F). No voice activity detection (VAD) is performed on the
data since non-speech segments and silence regions are more
likely to contain E-R-P information [33]. A filterbank of 100
filters and 70 filters are chosen empirically to extract MFS and
LFS features respectively. As mentioned in [25] our experi-
ments show poor performance with cepstral mean subtraction
and variance normalization (CMVN). Hence only cepstral mean
subtraction (CMS) is applied. Separate GMM classifiers are
trained for every feature space f , and the number of mixture
components in each GMM is identified empirically, such that
the performance on dev-data is enhanced. Nf (t) for every test
utterance in the feature space f is calculated, and the EER is
computed using Bosaris toolkit [34]. The accuracy of every sys-
tem is calculated based on the ratio between the total number of
hits and the total number of utterances in the dataset. The per-
formance of all four baseline systems after score normalization
is listed in Table 2.

Table 2: Results of baseline systems (in %).

System Feature
Development Data Evaluation Data
EER Accuracy EER Accuracy

CQC BL CQCC 4.49 83.27 26.40 29.99
MFC BL MFCC 7.56 92.22 11.28 72.53
MFS BL MFS 3.58 95.55 7.82 77.16
LFS BL LFS 5.13 95.38 9.82 71.77

As observed in all prior work, using information from more
than one feature space improves the performance. DLFS ap-
proach spontaneously chooses the optimal feature that better
discriminates an utterance from the other class (Section 5.3).
The DLFS systems are made with all combinations of features
from F , and the three best-performing systems are reported in
Table 3. Unlike score fusion systems, the DLFS systems do
not require a separate weight learning process. Since the per-
formance of score fusion systems is not superior to the DLFS
systems, the results are not reported in the paper.

MFM in the state-of-the-art system acts as a feature selec-
tor, training the MFM-LCNN with 25 different layers and 371K
parameters [9] is computationally expensive. Every test utter-
ance is passed through the LCNN and features are extracted. On
the other hand, domain information along with a set of hand-
crafted features with GMMs seems to perform equally well.
DLFS chooses the most suitable feature for each trial from this

feature set. DLFS uses the trials’ scores from individual feature-
specific systems and does not require separate training or weight
learning algorithms.

Table 3: EERs of DLFS systems (in %).

System Feature3 Dev-Data Eval-Data

DLFS LS LFS | MFS 4.13 6.65
DLFS MLS MFCC | LFS | MFS 3.98 6.23

DLFS CMLS CQCC | MFCC | LFS | MFS 3.30 6.60

The distribution of optimal features of development and
evaluation data of the DLFS MLS system is shown in Ta-
ble 4. The misses and false alarms of the DLFS MLS and
DLFS CMLS systems in all the candidate feature spaces are
shown in Table 5. The statistics reported in the table are cal-
culated with respect to the total number of trials in the eval-
uation data. From this table, it is evident that MFS and LFS
detect both genuine and replayed instances better than MFCC
for DLFS MLS system. Although LFS has less number of hits
in DLFS CMLS system, the number of false alarms is also less
compared to other features.

Table 4: Distribution of features (the number of trials in each
feature space) in DLFS MLS system

Dataset MFCC LFS MFS

Dev 247 1020 443
Eval 2832 4477 5997

Table 5: Statistics of two best DLFS systems on evaluation data.

Opt. Feature
DLFS MLS DLFS CMLS

Hits Misses False Hits Misses False
Alarms Alarms

CQCC - - - 1372 15 2582
MFCC 1778 6 1048 1897 4 866
MFS 5373 8 616 5022 7 579
LFS 2999 54 1424 693 9 260

7. Conclusion
Replayed utterances contain perceptible recording device infor-
mation in either the high- or low-frequency regions. Features
that emphasize these characteristics are required. Two alterna-
tives features namely, MFS and LFS are proposed for the first
time for the task of replay attack detection. MFS resolves low-
frequency regions better than LFS, while LFS resolves high-
frequency regions better than MFS. The proposed features in
tandem with the feature switching paradigm outperform the
state-of-the-art LCNN based system with a relative improve-
ment of 7.43%. The training and evaluation E-R-P hardly over-
lap; nevertheless, the system does scale well.
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